Abstract
Extracting ground points is the kernel of DTM generation being considered as one of the most popular LIDAR applications. The previous extraction approaches can be mostly characterized as a point based approach, which sequentially examines every individual point to determine whether it is measured from ground surfaces. The number of examinations to be performed is then equivalent to the number of points. Particularly in a large set, the heavy computational requirement associated with the examinations is obviously an obstacle to employing more sophisticated criteria for the examination. To reduce the number of entities to be examined and produce more robust results, we developed an approach based on features rather than points, where a feature indicates an entity constructed by grouping some points. In the proposed approach, we first generate a set of features by organizing points into surface patches and grouping the patches into surface clusters. Among these features, we then attempt to identify the ground features with the criteria based on the attributes of the features. The points grouped into these identified features are labeled ground points, being used for DTM generation afterward. The Proposed approach was applied to many real airborne LIDAR data sets. The analysis on the results strongly supports the prominent performance of the proposed approach in terms of not only the computational requirement but also the quality of the DTM.
지표점의 추출은 DTM 생성을 위한 가장 중요한 과정이다. 기존의 지표점 추출 방법은 대부분 점기반방법으로 분류될 수 있다. 점기반방법은 모든 개별점(point)에 대하여 해당 점이 지표를 구성하는 점인지를 시험하는 방법이다. 이 때 시험의 회수는 점의 개수와 동일하기 때문에, 특히 점의 수가 많은 데이터를 처리할 경우 계산량이 심각하게 늘어나 시험에 보다 정교한 기준과 전략을 사용하는데 어려움이 있었다. 이로 인해 많은 연구에도 불구하고 아직 만족할만한 결과를 제공하는 방법이 개발되지 못하였다. 이에 본 연구는 시험하는 개체의 수를 줄이면서 보다 안정적인 결과를 얻을 수 있도록 점이 아닌 피쳐에 기반한 방법을 제안한다. 여기서, 피쳐란 점을 그룹화하여 얻을 수 있는 개체를 의미한다. 제안된 방법에서는 먼저 점들로부터 표면패치들을 생성하고, 이어서 표면패치들로부터 표면집단들을 구성한다. 구성된 표면집단들로부터 지표에 해당하는 표면집단을 식별한 후 식별된 표면집단에 포함된 모든 점들을 지표점으로 명시한다. 이 방법을 항공 LIDAR 실측데이터에 적용하여 제안된 방법의 뛰어난 성능을 실험적으로 증명하였다.