DOI QR코드

DOI QR Code

THE ION ACOUSTIC SOLITARY WAVES AND DOUBLE LAYERS IN THE SOLAR WIND PLASMA

  • Choi C.R. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences, Chungbuk National University) ;
  • Lee D.Y. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences, Chungbuk National University) ;
  • Kim Yong-Gi (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences, Chungbuk National University)
  • Published : 2006.09.01

Abstract

Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external magnetic field is reinvestigated using the Sagdeev's potential method. Although the Sagdeev potential has a singularity for n < 1, where n is the ion number density, we obtain new solitary wave solutions by expanding the Sagdeev potential up to ${\delta}n^4$ near n = 1. They are compressiv (rarefactive) waves and shock type solitary waves. These waves can exist all together as a superposed wave which may be used to explain what would be observed in the solar wind plasma. We compared our theoretical results with the data of the Freja satellite in the study of Wu et al. (1996). Also it is shown that these solitary waves propagate with a subsonic speed.

Keywords

References

  1. Choi, C. R., Lee, D.-Y., & Kim, Y. G. 2004, JA&SS, 21, 201
  2. Choi, C. R., Ryu, C.-M., Lee, N. C., & Lee, D.- Y. 2005a, Phys. Plasams, 12, 022304 https://doi.org/10.1063/1.1843820
  3. Choi, C. R., Ryu, C.-M., Lee, N. C., Lee, D.-Y., & Kim, Y. 2005b, Phys. Plasams, 12, 072301 https://doi.org/10.1063/1.1943367
  4. Das, G. C., Tagare, S. G., & Sarma, J. 1998, Planet. Space Sci., 46, 417 https://doi.org/10.1016/S0032-0633(97)00142-6
  5. Holback, B., Jannsson, S. E., Ahlen, L., Lundgren G., Lyngdal L., Powell S., & Meyer, A. 1994, Space Sci. Rev. 70, 577 https://doi.org/10.1007/BF00756887
  6. Nejoh, Y. N. & Sanuki, H. 1995, Phys. Plasmas, 2, 4122 https://doi.org/10.1063/1.871035
  7. Rao, N. N., Shukla, P. K., & Yu, M. Y. 1990, Planet. Space Sci., 38, 543 https://doi.org/10.1016/0032-0633(90)90147-I
  8. Sagdeev, R. Z. 1966, Reviews of Plasma Physics, 4, 23
  9. Shukla, P. K. & Mamun, A. A. 2002, Introduction to Dusty Plasma Physics (Bristol: Institute of Physics)
  10. Shukla, P. K. & Mamun, A. A. 2003, New Journal of Physics, 5,17. 1
  11. Wu, D.-J., Huang, G.-L., Wang, D.-Y., & Falthammar, C.-G. 1996, Phys. Plasmas, 3, 2879 https://doi.org/10.1063/1.871648
  12. Wu, D.-J., Wang, D.-Y., & Falthammar, C.-G., 1995, Phys. Plasmas, 2, 4476 https://doi.org/10.1063/1.871005
  13. Yu, M. Y., Shuklar, P. K, & Bujarbarua, S. 1980, Phys. Fluids., 23, 2146 https://doi.org/10.1063/1.862872

Cited by

  1. Arbitrary amplitude ion acoustic solitary waves and double layers in a magnetized auroral plasma with q-nonextensive electrons vol.357, pp.2, 2015, https://doi.org/10.1007/s10509-015-2329-0
  2. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma vol.22, pp.10, 2015, https://doi.org/10.1063/1.4933000
  3. Ion acoustic solitons in Earth’s upward current region vol.19, pp.7, 2012, https://doi.org/10.1063/1.4737110
  4. Oblique propagation of solitary electrostatic waves in magnetized plasmas with cold ions and nonthermal electrons vol.24, pp.2, 2017, https://doi.org/10.1063/1.4976126
  5. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma vol.22, pp.5, 2015, https://doi.org/10.1063/1.4921740
  6. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma vol.23, pp.3, 2016, https://doi.org/10.1063/1.4944669