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ABSTRACT

Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external
magnetic field is reinvestigated using the Sagdeev’s potential method. Although the
Sagdeev potential has a singularity for n < 1, where n is the ion number density, we
obtain new solitary wave solutions by expanding the Sagdeev potential up to dn? near
n = 1. They are compressiv (rarefactive) waves and shock type solitary waves. These
waves can exist all together as a superposed wave which may be used to explain what
would be observed in the solar wind plasma. We compared our theoretical results with
the data of the Freja satellite in the study of Wu et al. (1996). Also it is shown that
these solitary waves propagate with a subsonic speed.
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1. INTRODUCTION

Ion acoustic solitary waves in a collisionless plasma have long been a subject of extensive study
(Yu et al. 1980, 2003, Rao et al. 1990, Nejoh & Sanuki 1995, Wu et al. 1995, 1996, Das et al. 1998,
Shukla & Mamun 2002, 2003, Choi et al. 2004, 2005a,b). However most of these studies were
about dust ion accustic solitary waves (DIASWs) or dust acoustic solitary waves (DASWs) (Rao
et al. 1990, Shukla & Mamun 2002, 2003). Nejoh & Sanuki (1995) studied the effect of the ion
temperature in an unmagnetized electron beam plasma. Das et al. (1998) investigated the dynamics
of solitary waves in an ion-beam plasma having multiple electron temperature. Choi et al. (2004)
have studied the role of dust particles in a plasma composed of electrons and ions and also studied
DIASWs in a magnetized dusty plasma. Among others, Wu et al. (1995, 1996) investigated solitary
kinetic Alfvén waves (SKAWs) accompanied by a hump and dip density solitons, and applied it to
the electromagnetic spikes observed by the Freja satellite. The soliton solution calculated by Wu
et al. (1996) is the sech? type solution obtained by expanding the Sagdeev potential up to n3.
However we obtained the higher order solutions than Wu et al. (1996) did. We will show that our
results match well with the data of the Freja satellite. Therefore our results can be used to interpret
ion acoustic solitary waves in the solar wind plasma.
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In the present work, we studied the solitary waves for ion density in a magnetized two-component
plasma with hot electrons and cold ions but without dust particles. While Yu et al. (1980) obtained
a solution of ion acoustic solitary wave in such a system by a small amplitude limit, here we re-
examine the solitary wave in the same plasma, and find the existence of new types of solitary wave
solutions that can be used to interpret similar waves in the solar wind plasma.

In Section 2 the basic equations and the calculation of the exact Sagdeev potential are presented.
The calculated Sagdeev potential is analyzed and the existence of large amplitude localized solution
is presented in Section 3. Using a small amplitude limit new solutions are obtained in Section 4.
Finally, the conclusion is given in Section 5.

2. BASIC EQUATIONS AND CALCULATION OF THE SAGDEEV POTENTIAL

The basic equation describing the ion dynamics in a magnetized plasma composed of hot elec-
trons and cold ions can be written as

Bn,
s +V-(nyv;) =0, (1)
and 9 v B
Vl+(Vi‘V)Vé=—i—ﬂ+e vi x é,, (2)
ot m; m;c

where subscript ¢ and e stand for ions and electrons, n;, v;, m;, and ¢ are the number density,
velocity, mass, and the electrostatic potential, respectively. The background magnetic field B =
Bgé, is a constant in z direction, where €, is the unit vector in the z direction. We assume that the
characteristic length is much larger than the Debye length Ap. This assumption allows us to use
the charge neutrality condition(n ~ n; = n.) instead of the full Poisson equation, which greatly
simplifies the algebra. The number density of the electrons is given by

ne = Neo expleg/Te). (3)

The basic equation of the system can be rewritten in the normalized form as follows (Chot et
al. 2004, 2005a)
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which we normalized by ion gyro-frequency ! = eBg/m;c and ion acoustic wave speed C; =
(ET./m;)'/2. Here we are considering ion acoustic wave, which is a longitudinal wave, in the pres-
ence of external magnetic field, and the two directions, perpendicular and parallel to the magnetic
field, are taken as = and z coordinate, respectively. So all physical quantities are taken to be functions
of z and z (Yu et al. 1980).
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To obtain the linear dispersion relation for low frequency (w <« ) ion acoustic waves, we
linearize the basic equations by assuming that all perturbed quantities vary as exp[i(k,z+k,z—wt)].
Then, we find the dispersion relation to be written as

w= ®
V1+ k2
where k,, and k, are the wave vectors in the o and z directions, respectively.

In order to derive the Sagdeev potential, we assume that all the dependent variables depend on a
single independent variable £ = I,z + [,z — M1, where [; and [, are directional cosines satisfying
12412 = 1, and M is the Mach number of localized wave. From Egs. (4)-(7) and using the boundary
condition(§ = oo;n — 1 and ¢ = v = 0), we can obtain as

d? 1 M? 2,
@(lnn+§—g2—)——M2 (n*—n) - (1-mn). )
Eq. (9) can be expressed as
1 (dn\?
: (75) + V() =0, (10)
where the Sagdeev potential V' (n) is given by
_ n® Bn—1" 2 2 2 M2 2
Vin) = 2(n2—M2)2 { e +E((1—l;)n1nn—(n—lz)(n—1))+7L—2——(1—n) }

11
Equation (10) is in the form of an energy integral for a particle with a unit mass and a velocity dn/d¢
at position n which oscillates in a potential V' (n) (Sagdeev 1966).

3. LARGE AMPLITUDE ION ACOUSTIC SOLITARY WAVES

We now examine the Sagdeev potential V(n) to determine the conditions for the ion acous-
tic solitary wave to exist and the behavior of possible localized solutions. The conditions for the
existence of localized solutions are given by

dV(n
Ve = 0| =0
V(N) = 0 (12)
Vin) < 0, N<n<1l or 1<n<N,

where /V is the minimum or maximum ion density within the localized potential structure.
The condition for the large amplitude double layer further requires, in addition to the ones given
above, that

. av
Viher, = 20—, (13)
n=N,,

Vin) < 0, for N,<n<1 or 1<n<N,,

where NV, is the height of a double layer.
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Figure 1. The Sagdeev potential: (a) for fixed I, = 0.57, M = 0.65,0.70, and 0.75, (b) for fixed M =
0.65,1, = 0.45, 0.55, and 0.75.

For a negative finite value of the Sagdeev potential, it has to satisfy the condition d*V (n) /dn? In:l
< 0. Then there can exist the ion acoustic solitary wave. In this case, the Mach number of the solitary

wave lies in the range of
Z2<M?<1 (14)

implying the solitary wave propagates with a subsonic speed. We then find the critical Mach number
M. = .. In the limit of M — M,, the amplitude of the compressive ion acoustic solitary wave
becomes zero.

However, we find that, in addition to this conventional compressive wave, there exists other
types of solitary wave solution in the region n < 1. In order to demonstrate this, we plotted the
Sagdeev potential for M = 0.65, 0.70, and 0.75 with [, being fixed to 0.57 in Fig. la. It is seen
that the amplitude of compressive ion acoustic solitary wave increases in the region 1 < n < N
as M increases, but also discontinuity in ion density appears as a shock in the region N < n < 1.
In Fig. 1b, the amplitude of compressive ion acoustic solitary wave decreases as [, increases for a
fixed M = 0.65. Namely, the ion acoustic solitary waves become difficult to propagate along to the
external field.

4. SMALL AMPLITUDE ION ACOUSTIC SOLITARY WAVES

Now we will examine the structure of the ion density solitary wave solutions by a small ampli-
tude limit. If we expand the Sagdeev potential V (n) up to én?® as,

V(n) = Aén® + Bon®, (15)
where dn = n — 1 and the coefficients are defined by
_M2 + lz2
4 2M2(1 — M2y’ (16)
—BMA _ M2(_7I2 _ 9\ _ 972"
B — 1-6M" - M*(-T71; - 2) 3lz' a7n

3 —M2(1 < M?)?
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Figure 2. The sech? type ion acoustic solitary wave solutions by expanding the Sagdeev potential up to dn?;
(a) the hump type for I, = 0.847 and M = 0.776, (b) the dip type for I, = 0.61 and M = 0.75.

By substituting Eq. (15) into Eq. (10), we obtain
én = SNsech?(£/)), (18)

where 6N = A/B and A = 4/A. We plotted the sech? type (Yu et al. 1980, Wu et al. 1996)
solution of the hump type IASW for [, = 0.847 and M = 0.776 in Fig. 2a and the dip type IASW
forl, = 0.61 and M = 0.75 in Fig. 2b.

Although the Sagdeev potential V (n) includes a singularity, the double-well shape of the poten-
tial as shown in Fig. 1 strongly suggests that it needs to be expanded at least up to dn? nearn = 1.
Thus we approximate V (n) as (Choi et al. 2005a)

V(n) = Adn? + Bén® + Cént, (19)

where the coefficient C is

o L —36M° 4 MU(5L2 —3) + M2(~1712 ~ 1) + 612
12 M2(1 — M2)3 '

(20)

In order to find the solutions for ion acoustic solitary waves, we substitute Eq. (19) into Eq.
(10). This leads to

1 /dén 2 9 3 4
3 —(E + Aén? + Bén® + Cén* = 0. 21

From the requirement that ddén /d¢ > 0 and by defining dn = 1/y, we obtain B2 —4AC > 0, which
gives rise to a condition A < 0 and C' > 0. As a result, the solution for the solitary wave emerges

1

M = B /3A % [alcosh(C)’

(22)

where a? = (B? - 4AC)/4A?% and ¢ = /| — 2A4] £. In the case of the én? expansion, C' = 0, and
thus only sech? type solitary wave solution can be found (Yu et al. 1980, Wu et al. 1996).
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Figure 3. Small amplitude ion acoustic solitary wave solutions; (a) the compressive type ion acoustic solitary
wave for I, = 0.414 and M = 0.483, (b) the rarefactive ion acoustic solitary wave for [, = 0.451 and
M = 0.451, and (c)-(d) the shock type ion acoustic solitary waves for I, = 0.553 and M = 0.603.

We also note that, for A < 0 and B? — 4AC = 0, there can exist another type of solitary wave,
1.e., shock type solitary wave (or kink type). From (21), the shock type solitary wave can be obtained

as
1

" TBJ2A + exp((/vV—24)

The height and width of this type of wave are given by | — 24/B| and +/—2A, respectively, as
¢ — oo. The two types of solitary wave solutions are shown in Figs. 3: (a) the compressive solitary
wave for I, = 0.414 and M = 0.483, (b) the rarefactive one for [, = 0.451 and M = 0.451, (c)-(d)
the shock type solitary waves for [, = 0.553 and M = 0.603.

It should be noted that the solitary wave may appear as a superposition of sech? type and the two
other types of solutions. Figure 4a and 4b show observations from Freja satellite on March 3, 1993
(Wu et al. 1996) where two density fluctuations dn /n were interpreted as hump and dip solitons (See
Holbak et al. 1994, for details about the Freja measurements). The amplitudes of the density hump
and dip are ~ 20% and ~-20%, respectively, the characteristic width of the solitons is about ~300
m being estimated based on the velocity of the Freja satellite 6.7 km/s, and the dip soliton seems

on (23)
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Figure 4. (a) and (b) The Freja satellite measurements of SKAWs on March 3, 1993 (taken from Wu et
al. (1996)), (c) and (d) the superposed solutions from our theoretical calculations. The solution in (c) was
obtained from solutions in Figure 2a and Figure 3b and 3c, and the solution in (d) from Figure 2b and Figure
3a and 3b, respectively.

to be slightly wider than the hump (Wu et al. 1996). We suggest that these waves can be better
interpreted in terms of the superposed waves of the solutions that we have found above. Specifically,
the wave forms in Figures 4a and 4b can be reproduced by superpositions of solutions shown in
Figures 2a,b,c and Figures 2b, 3a,b, respectively. Figures 4c and 4d show the results. We believe
that our interpretation based on the superposed solutions is an improvement from that suggested by
Wu et al. (1996) who used hump and dip solutions only.

5. CONCLUSION

In the present paper, we have studied nonlinear ion acoustic solitary waves in a magnetized
plasma consisting of electron and ion, obliquely propagating to the external magnetic field. Although
the Sagdeev potential always has a singularity in the region n < 1, it gives rise to a double-well
shaped potential. Thus this necessitates the small amplitude expansion up to én? nearn = 1. It is
found that there can coexist the shock (or kink) type ion acoustic solitary wave and the compressive
(or rarefactive) ion acoustic solitary wave. Then it is possible to have a linear combination of the
sech? type, shock (or kink) type, and compressive (or rarefactive) solitary wave. Therefore we
suggest that the superposed waves may be used to explain what would be observed in the solar wind
plasmas.
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