DOI QR코드

DOI QR Code

Inhibitory Effect on Infection of Plant Viruses by Filtrate Powder from Culture Broth of Acinetobacter sp. and Its Mode of Action

Acinetobacter sp. 배양여과액 분말제제의 식물바이러스에 대한 감염억제 효과 및 작용

  • Kim Mi-Soon (Department of Applied Biology, Kangwon National University) ;
  • Jung Min-Young (Department of Applied Biology, Kangwon National University) ;
  • Kim Yun-Sung (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Jang Cheol (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Hwang In-Cheon (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Ryu Ki-Hyun (Division of Environment & Life Sciences, Seoul Women's University) ;
  • Choi Jang-Kyung (Department of Applied Biology, Kangwon National University)
  • 김미순 (강원대학교 응용생물학과) ;
  • 정민영 (강원대학교 응용생물학과) ;
  • 김윤성 ((주)경농 중앙연구소) ;
  • 장철 ((주)경농 중앙연구소) ;
  • 황인천 ((주)경농 중앙연구소) ;
  • 류기현 (서울여자대학교 환경생명과학부) ;
  • 최장경 (강원대학교 응용생물학과)
  • Published : 2006.08.01

Abstract

A filtrate powder, designated as KNF2022, produced from culture broth of Acinetobacter sp. KTB3 was tested for their inhibitory effects on Pepper mild mottle virus (PMMoV) infection to Nicotiana glutinosa or N. tabacum cv. Xanthi nc. When 1/100 dilution with distilled water was treated to the plants and PMMoV was inoculated, the inhibition was estimated to be 94.3 and 95.6%, respectively. The same concentrations of KNF2022 inhibited infections of Pepper mottle virus (PepMoV) and Cucumber mosaic virus (CMV) on Chenopodium amaranticolor by 97.1 and 92.5%, respectively. Duration of inhibitory activity of the filtrate powder from Acinetobacter sp. culture broth against PMMoV infection on N. glutinosa was maintained for 2 days at 80% inhibition level, however, the inhibitory effect was diminished from 4 days after treatment to 50% levels. To evaluate inhibitory effects on systemic host plants of the antiviral agent, symptom developments of PMMoV, PepMoV and CMV on KNF2022-treated pepper plants were investigated. Delayed symptom developments until 10 days after inoculation (DAI) were observed for all the three viruses when the viruses were inoculated individually, and these delayed symptom development effects were maintained until 30 DAI in case of PepMoV. Moreover, PepMoV was not detected by RT-PCR and ELISA until 30 DAI. These delayed symptom development effects were diminished in all combinations of three virus co-inoculations due to synergism of three viruses on symptom developments. Inhibitory effect of KNF2022 was verified under electron microscopic examinations using purified virus preparations. Particles of PMMoV and PepMoV were observed on specimens from 5 min after KNF2022 treatment, and the particle sizes were reached in the range of 200-250 nm and 400-600 nm, respectively. Furthermore, the viral particles were destructed and particle sizes were reached in the range of 100-150 nm and 300-500 nm, respectively, on 60 min after treatments. Reduction of local lesion numbers on N. tabacum cv. Xanthi nc and C. amaranticolor were accompanied with reduction of virus particle sizes. In the case of CMV destructed particle numbers were also increased according to incubation period after KNF2022 treatment and local lesions on C. amaranticolor were reduced.

Acinetobacter sp. KTB3의 배양여과액으로 제조한 분말 제제 KNF2022의 바이러스 감염억제 효과를 PMMoV 와 N. glutinosa 또는 N. tabacum cv. Xanthi nc를 이용하여 검정한 결과, 증류수 1/100 배양액의 실질 농도 10,000 ppm) 희석농도에서 $94.3{\sim}95.6%$의 높은 감염억제 효과를 나타냈다. 이 1/100 희석농도를 이용하여 PepMoV-C amaranticolor에서 검정한 억제효과는 97.1%, CMV-C amaranticolor 에서는 92.5%의 감염억제를 나타냈다. KNF2022 희석액을 N. glutinosa의 반엽에 도말하고 일정 시간 경과 후 PMMoV를 접종하여 조사한 억제효과의 지속성은 처리 2 일 후까지 약 80% 선에서 억제효과를 나타냈으나, 처리 4 일 후부터는 50% 수준으로 저하되었다. 고추에 KNF2022를 처리한 후 3 종의 바이러스를 접종하고 발현되는 병징을 조사한 결과, 각 바이러스를 단독으로 접종하였을 경우는 바이러스의 종류에 관계없이 접종 후 10 일까지 병징발현이 지연되는 효과를 보였다. 특히 PepMoV를 접종한 경우는 접종 후 30 일까지 병징발현이 억제되어 제제의 처리효과가 뚜렷하게 나타났다. 한편 이들 3 종 바이러스의 복합감염에 대한 KNF2022의 효과는 모든 바이러스 조합에서 단독감염 보다 강하게 발현되어 병징억제의 효과는 뚜렷하게 나타나지 않았다. 제제를 처리한 고추에서 증식된 바이러스의 농도를 PCR 및 ELISA로 검출한 결과, PepMoV를 단독으로 접종한 경우, 접종 후 30 일까지 cDNA가 검출되지 않았다. RT-PCR 검정에서 억제효과가 인정된 PepMoV와 그 복합감염 의 조합에 대해서 ELISA 검정을 실시한 결과, PCR 검정에서 얻어진 결과와 유사한 패턴을 보여 PepMoV에 대한 감염억제효과가 뚜렷하게 인정되었다. KNF2022를 처리하여 전자현미경으로 관찰한 PMMoV와 PepMoV는 처리 5 분 후에 각각 200-250 nm 및 400-600 nm의 길이로 절단된 입자가 많이 관찰되었고, 처리 30 분 후에는 대부분 100-150nm와 300-500 nm의 절편입자로 관찰되었다. 이와 같이 절단된 입자가 증가할수록 N. tabacum cv. Xanthi nc 와 C. amaranticolor에서 나타난 병반수는 급격하게 감소되었다. 한편 KNF2022를 처리한 후 전자현미경을 관찰한 CMV의 바이러스 입자는 처리시간에 비례하여 파괴된 입자의 수가 증가하였으며, 파괴된 바이러스입자가 증가할수록 C. amaranticolor에서의 병반수도 감소되었다.

Keywords

References

  1. Berger, P. H. and Shiel, P. J. 1998. Potyvirus isolation and RNA extraction. In ; Plant Virology Protocols. ed. by G D. Foster and S. C. Taylor, pp. 151-160. Humana Press, Totowa, USA
  2. 최장경, 정옥화. 1984. 비름과식물 즙액에 의한 담배 모자이크 바이러스의 감염억제효과. 한국식물보호학회지 23: 137-141
  3. Choi, J. K., Kim, H. J., Hong, J. S., Kim, D. W. and Lee, S. Y. 1998. Identification and differentiation of cucumber mosaic virus isolates in Korea. Korean J. Plant Pathol. 14: 7-12
  4. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483 https://doi.org/10.1099/0022-1317-34-3-475
  5. Gibbs, A. and Harrison, B. 1976. The effects of inactivators on virus particles. In: Plant Virology, The Principles. ed. A. Gibbs and B. Harrison, pp. 129-136, Edward Arnold, London
  6. Kalo, F. and Taniguchi, T. 1987. Properties of a virus inhibitor from spinach leaves and mode of action. Ann. Phytopath. Soc. Japan, 53: 159-167 https://doi.org/10.3186/jjphytopath.53.159
  7. Kim, M. S., Kim, Y. S., Jang, C., Hwang, I. C., Ryu, K. H. and Choi, J. K. 2005. Effect of individual and multiple infections with three viruses on disease progress and growth of pepper plants. Plant Pathol. J. 21: 427
  8. Kim, Y. S., Hwang, E. I., O, J. H., Kim, K. S., Ryu, M. H. and Yeo, W. H. 2004. Inhibitory effects of Acinetobacter sp. KTB3 on infection of Tobacco mosaic virus in tobacco plants. Plant Pathol. J. 20: 293-296 https://doi.org/10.5423/PPJ.2004.20.4.293
  9. Leberman, R. 1966. The isolation of plant viruses by means of 'simple' coacervates. Virology 30: 341-347 https://doi.org/10.1016/0042-6822(66)90112-7
  10. Moghal, S. M. and Francki, R. I. B. 1976. Towards a system for the identification and classification of potyviruses. I. Serology and amino acid composition of six distinct viruses. Virology 73: 350-362 https://doi.org/10.1016/0042-6822(76)90396-2
  11. Mossop, D. W., Francki, R. I. B. and Grivell, C. J. 1976. Comparative studies on tomato aspermy and cucumber mosaic viruses. V. Purification and properties of a cucumber mosaic virus inducing severe chlorosis. Virology 74: 544-546 https://doi.org/10.1016/0042-6822(76)90361-5
  12. Takagi, Y. and Ogawa, K. 1978. Inhibitory effect of nonionic surface active agents on tobacco mosaic virus infection. Ann. Phytopath. Soc. Japan 44: 282-287 https://doi.org/10.3186/jjphytopath.44.282
  13. Takagi, Y. and Shimada, K. 1977. Inhibitory effect of aqueous extracts from the saw dust-rice bran media grown mycelia of Hymeonomycetes on tobacco mosaic virus infection. Ann. Phytopath. Soc. Japan 43: 211-214 https://doi.org/10.3186/jjphytopath.43.211
  14. Takanami, Y. 1981. A striking change in symptoms on cucumber mosaic virus-infected tobacco plants induced by a satellite RNA. Virology 109: 120-126 https://doi.org/10.1016/0042-6822(81)90476-1
  15. 여운형, 김영호, 박은경, 김상석. 1997. 방선균 B25균주가 생산하는 항생물질 ASA의 물리, 화학적 특성 및 항바이러스 활성. 한국식물병리학회지 13: 63-68
  16. Yoon, J. Y. 2003. Molecular characterization of symptom attenuation of Pepper mild mottle virus. Doctoral Thesis, Seoul Women's Univ., Seoul, 166 pp