Analysis of the Movement of Surgical Clips Implanted in Tumor Bed during Normal Breathing for Breast Cancer Patients

유방암 환자의 정상 호흡에서 종양에 삽입된 외과적 클립의 움직임 분석

  • Lee, Re-Na (Department of Radiation Oncology, Ewha, Womans University College of Medicine) ;
  • Chung, Eun-Ah (Department of Radiation Oncology, Ewha, Womans University College of Medicine) ;
  • Suh, Hyun-Suk (Department of Radiation Oncology, Ewha, Womans University College of Medicine) ;
  • Lee, Kyung-Ja (Department of Radiation Oncology, Ewha, Womans University College of Medicine) ;
  • Lee, Ji-Hye (Department of Radiation Oncology, Ewha, Womans University College of Medicine)
  • 이레나 (이화여자대학교 의과대학 방사선종양학교실) ;
  • 정은아 (이화여자대학교 의과대학 방사선종양학교실) ;
  • 서현숙 (이화여자대학교 의과대학 방사선종양학교실) ;
  • 이경자 (이화여자대학교 의과대학 방사선종양학교실) ;
  • 이지혜 (이화여자대학교 의과대학 방사선종양학교실)
  • Published : 2006.09.30

Abstract

[ $\underline{Purpose}$ ]: To evaluate the movement of surgical clips implanted in breast tumor bed during normal breathing. $\underline{Materials\;and\;Methods}$: Seven patients receiving breast post-operative radiotherapy were selected for this study. Each patient was simulated in a common treatment position. Fluoroscopic images were recorded every 0.033 s, 30 frames per 1 second, for 10 seconds in anterior to posterior (AP), lateral, and tangential direction except one patient's images which were recorded as a rate of 15 frames per second. The movement of surgical clips was recorded and measured, thereby calculated maximal displacement of each clip in AP, lateral, tangential, and superior to inferior (SI) direction. For the comparison, we also measured the movement of diaphragm in SI direction. $\underline{Results}$: From AP direction's images, average movement of surgical clips in lateral and SI direction was $0.8{\pm}0.5\;mm$ and $0.9{\pm}0.2\;mm$ and maximal movement was 1.9 mm and 1.2 mm. Surgical clips in lateral direction's images were averagely moved $1.3{\pm}0.7\;mm$ and $1.3{\pm}0.5\;mm$ in AP and SI direction with 2.6 mm and 2.6 mm maximal movement in each direction. In tangential direction's images, average movement of surgical clips and maximal movement was $1.2{\pm}0.5\;mm$ and 2.4 mm in tangential direction and $0.9{\pm}0.4\;mm$ and 1.7 mm in SI direction. Diaphragm was averagely moved $14.0{\pm}2.4\;mm$ and 18.8 mm maximally in SI direction. $\underline{Conclusion}$: The movement of clips caused by breathing was not as significant as the movement of diaphragm. And all surgical clip movements were within 3 mm in all directions. These results suggest that for breast radiotherapy, it may not necessary to use breath-holding technique or devices to control breath.

목 적: 정상 호흡에서 외과적 클립을 이용하여 유방 종양의 움직임을 평가하였다. 대상 및 방법: 유방 보존 수술 후 방사선 치료를 받은 7명의 환자를 대상으로 하여 각 환자별로 일반적인 모의 치료 과정에서 형광 투시 영상을 얻었다. 한 환자의 영상만 매초 15프레임의 비율로 기록되었고, 다른 환자들의 영상은 1초당 30프레임의 비율로 앞뒤, 옆, 빗나가는 방향에서 기록되었다. 각 클립의 원점에서의 최대, 최소 움직임을 측정하였고 이를 통하여 클립마다 각 방향에서의 최대 움직임을 계산하였다. 비교를 위하여 위-아래 방향으로의 횡경막의 움직임도 측정하였다. 결 과: 앞뒤 방향의 영상으로부터 옆 방향과 위-아래 방향으로의 외과적 클립의 평균 움직임은 $0.8{\pm}0.5\;mm,\;0.9{\pm}0.2\;mm$이며, 최대 움직임은 1.9 mm, 1.2 mm였다. 또한, 옆 방향 영상에 나타난 클립들은 평균적으로 앞-뒤 방향으로 $1.3{\pm}0.7\;mm$, 위-아래 방향으로 $1.3{\pm}0.6\;mm$ 움직였으며, 최대 움직임은 각각 2.6 mm, 2.6 mm였다. 빗나가는 방향의 영상에 있는 외과적 클립들의 평균 움직임과 최대 움직임은 비스듬한 방향에서는 $1.2{\pm}0.5\;mm$와 2.4 mm였으며, 위-아래 방향으로는 $0.9{\pm}0.4\;mm$와 1.7 mm였다. 횡격막은 위-아래 방향으로 평균적으로 $14.0{\pm}2.4\;mm$ 움직였으며, 최대 18.8 mm 움직였다. 결 론: 호흡에 의해 발생되는 클립의 움직임은 횡경막의 움직임에 비해서 크지 않은 것으로 나타났다. 그리고, 외과적 클립의 움직임은 모든 방향에서 3 mm 이내였다. 이 결과, 유방암의 방사선 치료 시 호흡을 잡아주는 기술이나 도구가 필요하지 않다는 것을 알 수 있었다.

Keywords

References

  1. Allen AM, Siracuse KM, Hayman JA, Balter JM. Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 2004; 58:1251-1257 https://doi.org/10.1016/j.ijrobp.2003.09.081
  2. Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EPM, Jihnheer BJ. Variability in target volume delineation on CT scans of breast. Int J Radiat Oncol Biol Phys 2001 ;50:1366-1372 https://doi.org/10.1016/S0360-3016(01)01635-2
  3. ICRU Report 50. Prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Measurements; Bethesda, MD. 1993
  4. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44:911-919 https://doi.org/10.1016/S0360-3016(99)00056-5
  5. Keall PJ, Kini VR, Vedam SS, Mohan R. Motion adaptive x-ray therapy: a feasibility study. Phys Med Biol 2001 ;46:1-10 https://doi.org/10.1088/0031-9155/46/1/301
  6. Ford EC, Mageras GS, Yorke E, Rosenzweig KE, Wagman R, Ling CC. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 2002;52:522-531 https://doi.org/10.1016/S0360-3016(01)02681-5
  7. Shimizu S, Shirato H, Xo B, et al. Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging. Radiother Oncol 1999;50:367-370 https://doi.org/10.1016/S0167-8140(98)00140-6
  8. Malone S, Crook JM, Kendal WS, Szanto J. Respiratoryinduced prostate motion: quantification and characterization. Int J Radiat Oncol Biol Phys 2000;48:105-109 https://doi.org/10.1016/S0360-3016(00)00603-9
  9. Suh Y, Yi B, Ahn S, et al. Aperture maneuver with compelled breath (AMC) for moving tumors: a feasibility study with a moving phantom. Med Phys 2004;31 :760-766 https://doi.org/10.1118/1.1650565
  10. Korreman SS, Pedersen AN, Jottrup TJ, Specht L, Nystrom H. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol 2005;76:311-318 https://doi.org/10.1016/j.radonc.2005.07.009
  11. Barnes EA, Murray BR, Robinson DM, Underwood LJ, Hanson J, Roa WHY. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 2001;50:1091-1098 https://doi.org/10.1016/S0360-3016(01)01592-9
  12. Hanley J, Debois MM, Mah D, et al. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 1999;45:603-611 https://doi.org/10.1016/S0360-3016(99)00154-6
  13. Pedersen AN, Korrernan S, Nystrorn H, Specht L. Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold. Radiother Oncol 2004;72:53-60 https://doi.org/10.1016/j.radonc.2004.03.012
  14. Srnith RP, Bloch P, Harris EE, et al. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 2005;62:373-378 https://doi.org/10.1016/j.ijrobp.2004.10.022
  15. Weed OW, Yan 0, Martinez AA, Vicini FA, Wilkinson T J, Wong JW. The validity of surgical clips as a radiographic surrogate for the lumpectomy cavity in image-guided accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 2004;60:484-492 https://doi.org/10.1016/j.ijrobp.2004.07.410
  16. Baglan KL, Sharpe MB, Jaffray D, et al. Accelerated partial breast irradiation using 3D conformal radiation therapy (30-CRT). Int J Radiat Oncol Biol Phys 2003;55:302-311 https://doi.org/10.1016/S0360-3016(02)03811-7
  17. Pedersen AN, Korrernan S, Nystrorn H, Specht L. Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold. Radiother Oncol 2004;72:53-60 https://doi.org/10.1016/j.radonc.2004.03.012
  18. Kovner F, Agay R, Merirnsky O, Stadler J, Kalusner J, Inbar M. Clips and scar as the guidelines for breast radiation boost after lumpectomy. Euro J Surg OncoI 1999;25:483-486 https://doi.org/10.1053/ejso.1999.0683
  19. Lee R, Chung E, Lee J, Suh H. Evaluation of electron boost fields based on surgical clips and operative scars in definitive breast irradiation. J Korean Soc Therapeu Radiol Oncol 2005; 23:236-242
  20. Rabinovitch R, Finlayson C, Pan Z, et al. Radiographic evaluation of surgical clips is better than ultrasound for defining the lumpectomy cavity in breast boost treatment planning: a prospective clinical study. Int J Radiat Oncol Biol Phys 2000; 47:313-317 https://doi.org/10.1016/S0360-3016(99)00556-8
  21. Krawczyk JJ, Engel B. The importance of surgical clips for adequate tangential beam planning in breast conserving surgery and irradiation. Int J Radiat Oncol Biol Phys 1999;43:347-350 https://doi.org/10.1016/S0360-3016(98)00402-7
  22. Frazier RC, Vicini FA, Sharpe MB, et al. Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control. Int J Radiat Oncol Biol Phys 2004;58: 1041-1047 https://doi.org/10.1016/j.ijrobp.2003.07.005
  23. Rernoucharnps VM, Letts N, Yan D, et al. Three-dimensional evaluation of intra- and interfraction immobilization of lung and chest wall using active breathing control: a reproducibility study with breast cancer patients. Int J Radiat Oncol Biol Phys 2003;57:968-978 https://doi.org/10.1016/S0360-3016(03)00710-7