A rock physics simulator and its application for $CO_2$ sequestration process

$CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용

  • Li, Ruiping (Cooperative Research Centre for Greenhouse Gas Technologies Department of Exploration Geophysics Curtin University of Technology) ;
  • Dodds, Kevin (Cooperative Research Centre for Greenhouse Gas Technologies CSIRO Petroleum) ;
  • Siggins, A.F. (Cooperative Research Centre for Greenhouse Gas Technologies CSIRO Petroleum) ;
  • Urosevic, Milovan (Cooperative Research Centre for Greenhouse Gas Technologies Department of Exploration Geophysics Curtin University of Technology)
  • Published : 2006.02.28

Abstract

Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

지하 염수층의 $CO_2$ 주입은 큰 저장 능력으로 인하여 대기 중으로의 $CO_2$ 방출을 감소시키기 위한 가장 유망한 방법일 것이다. $CO_2$ 저장은 적어도 수 천년 간 $CO_2$가 지층 안에 안전하게 남아있도록 주의깊게 계획되고 모니터링되어야 한다. 특히 해양 저류층에 대한 탄성파 탐사 방법들은 알맞은 저류층특성이 제공된다면 $CO_2$의 주인공정과 분산을 모니터링하기 위한 일차적인 수단이다. 탄성파탐사 방법은 잠재적인 트랩, 저류층 특성, 저류층 저장능력의 규명에 또한 필수적이다. 따라서 $CO_2$ 저장에 대한 탄성파 반응의 변화에 대한 평가는 매우 초기 단계에 이루어져야 한다. 이것은 모암과 $CO_2$ 사이의 화학적 작용에 의해 일어날 수 있는 유체의 특성이나 광물 조성의 변화에 따른 탄성파 반응에서의 잠재적 변화를 평가하기 위해 나중 단계에 다시 고려될 필요가 있다. 따라서 저류층에 일정시간 이상의 $CO_2$ 주입에 의한 탄성파 반응 변화에 대해 섬세히 구축된 모형은 장기간의 모니터링 프로그램 설계에 도움을 준다. 그러한 목적으로 주입된 $CO_2$에 대한 단기간과 장기간의 4차원 탄성파 반응을 모델링하도록 설계된, 그래픽 사용자 인터페이스((GUI)를 채택한 암석물리학 모의실험장치를 개발했다. 적용분야는 $CO_2$ 위상 변화, 국부적인 압력과 온도 변화, 화학 반응 및 광물의 침전을 포함한다. 이방성 가스만(Gassmann) 식을 모의실험장치에 고려시킴으로써 단층과 파쇄대를 재활성화 시키는 $CO_2$의 탄성파 반응 또한 예측될 수 있다. 이 논문에서는 암석물리학 모의실험장치를 적용했던 현장(해상과 육상의 잠재적 $CO_2$ 격리 지역)의 사례를 보여주고 있다. 4차원 탄성파 반응들이 모니터링 프로그램의 설계를 돕기 위하여 만들어 졌다.

Keywords

References

  1. Angus, S., and de Reuck K.M., 1976, International thermodynamic table of the fluid state - 5 Methane: IDPAC, Pergamon
  2. Batzle, M., and Wang, Z., 1992, Seismic properties of pore fluids: Geophysics, 57, 1396-1408 https://doi.org/10.1190/1.1443207
  3. Berryman, J.G., and Milton, G.W., 1991, Exact results for generalized Gassmann's equations in composite porous media with two constituents: Geophysics, 56, 1950-1960 https://doi.org/10.1190/1.1443006
  4. Biot, M.A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency range: Journal of the Acoustical Society of America, 28, 168-178 https://doi.org/10.1121/1.1908239
  5. Duan, Z., Moller, N., and Weare, J.H., 1992, An equation of state for the CH4-CO,H,o system: II. Mixtures from 50 to 1000 C and 0 to 1000 bar: Geochimica et Cosmochimica Acta, 56, 2619-2631 https://doi.org/10.1016/0016-7037(92)90348-M
  6. Gassmann E, 1951, Dber die Elastizitat poroser Medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23
  7. Gurevich, B., 2003, Elastic properties of saturated porous rock with aligned fractures: Journal of Applied Geophysics, 54, 203-218 https://doi.org/10.1016/j.jappgeo.2002.11.002
  8. Johnson, J.w., Nitao, U., Steefe!, C.r., and Knauss, K.G., 2001, Reactive transport modeling of geologic $CO_2$ sequestration in saline aquifers: the influence of intraaquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration: 1 st National Conference on Carbon Sequestration, Washington, D.C., Conference Proceedings
  9. Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, 31, 355-369
  10. Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The Rock Physics Handbook - Tools For Seismic Analysis in Porous Media: Cambridge University Press
  11. McKenna, J.J., 2002, A rock physics model for seismic monitoring of geological storage of $CO_2$ within saline formations: GEODISC Project 6, EG-CR-02-01, Australian Petroleum Cooperative Research Centre
  12. McKenna, U., Gurevich, B., Urosevic, M., and Evans, B.J., 2003, Rock physics application to geological storage of $CO_2$: APPEA Journal, 43, 567-576 https://doi.org/10.1071/AJ02030
  13. McKenna, J.J 2004, Seismic response to $CO_2$ storage ill a saline aquifer: Ph.D. thesis (unpublished), Curtin University of Technology
  14. Rowe, A.MJr., and Chou, J.C.S, 1970, Pressure-volume-temperature-collcentration relation of aqueous NaCl solutions: Journal of Chemical Engineering Data, 15, 61-66 https://doi.org/10.1021/je60044a016
  15. Siggins, A.F., 2006. Velocity-effective stress response of $CO_2$, saturated sandstones: Exploration Geophysics, 37, (this volume)
  16. Span, R., and Wagner, W., 1996, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa: Journal of Physical Chemistry Reference Data, 25, 1509-1596 https://doi.org/10.1063/1.555991
  17. Voigt, W., 1890, Bestimmung der Elastizitiitskonstanten des brasilianischen urmalines: Annalen der Physik und Chemie, 41, 712-729
  18. Wood, A.w., 1955, A textbook of sound: The MacMillan Co., 360pp
  19. Wyllie, M.RJ., Gergory, A.R., and Gardner, L.W., 1958, An experimental investigation of facores affecting elastic wave velocities in porous media: Geophysics, 23, 459-493 https://doi.org/10.1190/1.1438493