Theory of efficient array observations of microtremors with special reference to the SPAC method

SPAC 방법에 근거한 상시진동의 효과적 배열 관측 이론

  • 강전 광 (산업기술종합연구소 지질정보연구부문)
  • Published : 2006.02.28

Abstract

Array observations of the vertical component of microtremors are frequently conducted to estimate a subsurface layered-earth structure on the assumption that microtremors consist predominantly of the fundamental mode Rayleigh waves. As a useful tool in the data collection, processing and analysis, the spatial autocorrelation (SPAC) method is widely used, which in practice requires a circle array consisting of M circumferential stations and one centre station (called "M-station circle array", where M is the number of stations). The present paper considers the minimum number of stations required for a circle array for efficient data collection in terms of analytical efficacy and field effort. This study first rearranges the theoretical background of the SPAC algorithm, in which the SPAC coefficient for a circle array with M infinite is solely expressed as the Bessel function, $J_0(rk)$ (r is the radius and k the wavenumber). Secondly, the SPAC coefficient including error terms independent of the microtremor energy field for an M-station circle array is analytically derived within a constraint for the wave direction across the array, and is numerically evaluated in respect of these error terms. The main results of the evaluation are: 1) that the 3-station circle array when compared with other 4-, 5-, and 9-station arrays is the most efficient and favourable for observation of microtremors if the SPAC coefficients are used up to a frequency at which the coefficient takes the first minimum value, and 2) that the Nyquist wavenumber is the most influential factor that determines the upper limit of the frequency range up to which the valid SPAC coefficient can be estimated.

상시진동의 수직 성분에 대한 배열 관측은 상시진동이 대부분 레일리파의 기본 모드로 이루어졌다는 가정하에 지하 층서구조를 추정하기 위해 자주 수행된다. 자료획득, 처리 및 분석의 유용한 도구로서 공간 자기상관(SPAC) 방법이 많이 사용되는데 이는 실제로 M개의 원형 수진기 배열과 중앙의 하나 측점으로 이루어진다 (M 측점 원형 배열). 이 논문에서는 분석 효율 및 현장 노력의 관점에서 효율적인 자료획득을 위한 원형 배열에 필요한 측점의 최소 수에 대해 연구하였다. 이 연구에서는 먼저 M 무한대의 원형 배열을 위한 SPAC 계수들이 단지 Bessel 함수 J0(rk)(r은 반지름, k는 파수)로서 표현되는 SPAC 알고리듬의 이론적 배경을 재정리하였다. 두번째로 M 측점 원형 배열에 대해 상시진동 에너지장과 무관한 오차항을 포함하는 SPAC 계수들을 배열을 가로지르는 파의 방향에 한해 해석적으로 유도해 내고 수치적으로 이들 오차항들에 대해서 평가하였다. 주요 평가 결과들은: 1) 만약 SPAC 계수들이, 계수가 첫번째 최소값을 갖는 주파수까지 이용되면 다른 4-, 5-, 9-측점 배열들에 비교했을 때 3-측점 원형배열이 상시진동의 관측에 효율적이고 유리하다. 2) 나이퀴스트 파수가 유효한 SPAC 계수가 평가될 수 있는 주파수의 상한선을 결정하는데 가장 영향을 끼치는 요소이다.

Keywords

References

  1. Aki, K., 1957. Space and time spectra of stationary stochastic waves. with special reference to microtremors: Bulletin of the Earthquake Research Institute. 35, 415-456
  2. Aki, K., 1965, A note on the use of microseisms in determining the shallow structures of the earth's crust: Geophysics, 30, 665-666 https://doi.org/10.1190/1.1439640
  3. Aki, K., Tsujiura, M., Hori, M., and Goto, K., 1958, Spectral study of near earthquake waves (I): Bulletin of the Earthquake Research Institute, 36, 71-98
  4. Arfken, G.B .. and Weber, H.J., 2001, Mathematical Methods for Physicists (5th edition): Academic Press
  5. Apostolidis, P., Raptakis, D., Roumelioti, Z., and Pitilakis, K., 2004, Determination of S-wave velocity structure using microtremors and spac method applied in Thessaloniki (Greece): Soil Dynamics and Earthquake Engineering, 24, 49-67 https://doi.org/10.1016/j.soildyn.2003.09.001
  6. Asten, M.W .. 2003, Lessons from alternative array design used for high-frequency microtremor array studies: in Earthquake Risk Mitigation, Wilson, J.L.. Lam, N.K., Gibson, G.M., and Butler, B., Proceedings of a Conference of the Australian Eartbquake Engineering Society. Melbourne, Paper No. 14
  7. Asten, M. W., 2004, Passive seismic methods using the microtremor wave field: 17'h Geophysical Conference and Exhibition, Australian Society of Exploration Geophysicists, Extended Abstracts
  8. Asten, M.W., 2005, On bias and noise in passive seismic data from finite circular array data processed using SPAC methods: (preprint)
  9. Asten, M.W., and Henstridge, J.D., 1984, Array estimators and the use of microseisms for reconnaissance of sedimentary basins: Geophysics, 49, 1828-1837 https://doi.org/10.1190/1.1441596
  10. Asten, M.W., Dhu, T., and Lam, N., 2004, Optimised array design for microtremor array studies applied to site classification; observations, results and future use: Conference Proceedings of the 13th World Conference of Earthquake Engineering, Paper 2903
  11. Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis: Proceedings of the Institute of Electrical and Electronics Engineers, 57, 1408-1418
  12. Chatfield, C.; 1989, The Analysis of Time Series. an Introduction, 4th edition: Chapman and Hall
  13. Cho, I., Tada, T., and Shinozaki, Y., 2004, A new method to determine phase velocities of Rayleigh waves from microseisms: Geophysics, 69, 1535-1551 https://doi.org/10.1190/1.1836827
  14. Chouet, B., De Luca, G., Milana, G., Dawson, P., Martini, M., and Scarpa, R., 1998, Shallow velocity structure of Stromboli Volcano, ltaly, derived from smallaperture array measurements of Strombolian tremor: Bulletin of the Seismological Society of America, 88, 653-666
  15. Henstridge, J.D., 1979, A signal processing method for circular arrays: Geophysics, 44, 179-184 https://doi.org/10.1190/1.1440959
  16. Hidaka, E., 1985, Phase velocity of Rayleigh waves and S-wave velocity distribution estimated from long-period microtremors: M.Sc. thesis (unpublished), Hokkaido University
  17. Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas: Journal of Physics of the Earth, 33, 59-96 https://doi.org/10.4294/jpe1952.33.59
  18. Hough, S.E., Seeber, L., Rovelli, A., Malagnini, L., DeCesare, A., Selveggi, G., and Lerner-Lam, A., 1992, Ambient noise and weak-motion excitation of sediment resonances: results from the Tiber Valley, ltaly: Bulletin of the Seismological Society of America, 82, 1186-1205
  19. Kudo, K., Kanno, T., Okada, H., Ozel, 0., Erdik, M., Sasatani, T., Higashi, S., Takahashi, M., and Yoshida, K., 2002, Site specific issues for strong ground motions during the Kocaeli, Turkey Earthquake of August 17, 1999, as inferred from array observations of microtremors and aftershocks: Bulletin of the Seismological Society of America, 92, 448-465 https://doi.org/10.1785/0120000812
  20. Lacoss, R.T, Kelly, E.J., and Toksoz, M.N., 1969, Estimation of seismic noise structure using arrays: Geophysics, 34, 21-38 https://doi.org/10.1190/1.1439995
  21. Malagnini, L., Rovelli, A., Hough, S.E., and Seeber, L., 1993, Site amplification estimates in the Garigliano Valley, central Italy, based on dense array measurements of ambient noise: Bulletin of the Seismological Society of America, 83,1744-1755
  22. Matsuoka, T., Umezawa, N., and Makishima, H., 1996, Experimental studies on the applicability of the spatial autocorrelation method for estimation of geological structures using rnicrotremors: Butsuri Tansa, 49, 26-41
  23. Matsuoka, T., and Shiraishi, H., 2002, Application of an exploration method using microtremor array observations for high resolution surveys of deep geological structures in the Kanto plains - Estimation of 3-D S-wave velocity structure in the southern part of Saitama prefecture: Butsuri Tansa, 55, 127-143
  24. Matsushima, T and Okada, H., 1989, A few remarks of the scheme of observation and analysis in estimating deep geological structures by using long-period microtremors: Geophysical Bulletin of Hokkaido University, 52, 1-10
  25. Matsushima, T and Ohshima, H., 1989, Estimation of underground structures using long-period rnicrotremors - Kuromatsunai Depression, Hokkaido: Butsuri Tansa, 42,97-105
  26. Matsushima, T and Okada, H., 1990, Determination of deep geological structures under urban areas: Butsuri Tansa, 43, 21-33
  27. Miyakoshi, K., Okada, H., Sasatani, T, Moriya, T., Ling, S., and Saito, S., 1994, Estimation of geological structure under ESG blind prediction test sites in Odawara city by using microtremors: Journal of the Seismological Society of Japan, 47, 273-285
  28. Miyakoshi, K., Okada, H., and Ling, S., 1996, Maximum wavelength possible to estimate phase velocities of surface waves in microtrernors: Proceedings of the 94th SEGJ Conference, 178-182
  29. Morikawa, H., Sawada, S., and Akamatsu, J., 2004, A method to estimate phase velocities of Rayleigh waves using microseisms simultaneously observed at two sites: Bulletin of the Seismological Society of America, 94, 961-976 https://doi.org/10.1785/0120030020
  30. Nguyen, F., Rompaey, Y, Teerlynck, H., Van Camp, M., Jongmans, D., and Camelbeeck, T, 2004, Use of microtremor measurement for assessing site effects in Northern Belgium -interpretation of the observed intensity during the Ms=5.0 June II 1938 earthquake: Journal of Seismology, 8, 41-56 https://doi.org/10.1023/B:JOSE.0000009498.84531.71
  31. Okada, H., 1998, Microtremors as an exploration method: Geo-exploration Handbook, vo1.2, Society of Exploration Geophysicists of Japan
  32. Okada, H., 2003, The Microtremor Survey Method (translated by Koya Suto): Geophysical Monograph Series, No.12, Society of Exploration Geophysicists
  33. Okada, H., and Sakajiri, N., 1983, Estimates of an S-wave velocity distribution using long-period microtremors: Geophysical Bulletin of Hokkaido University, 42, 119-143
  34. Okada, H., Matsushima, T, and Hidaka, E., 1987, Comparison of spatial autocorrelation method and frequency-wavenumber spectral method of estimating the phase velocity of Rayleigh waves in long-period microtremors: Geophysical Bulletin of Hokkaido University, 49, 53-62
  35. Okada, H., Matsushima, T, Moriya, T, and Sasatani, T., 1990, An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas: Butsuri Tansa, 43, 402-417
  36. Okada, H., Matsuoka, T., Shiraishi, H., and Hachinohe, S., 2003, Spatial autocorrelation algorithm for the microtremor survey method using semicircular arrays: Proceedings of the 109th SEGJ Conference, 183-186
  37. Priestley, M.B., 1981, Spectral Analysis and Time Series: Academic Press
  38. Roberts, J.C., and Asten, M.W., 2004, Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method: Exploration Geophysics, 35, 14-18 https://doi.org/10.1071/EG04014
  39. Roberts, J.e., and Asten, M.W., 2005, Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements: Exploration Geophysics, 36, 34-40 https://doi.org/10.1071/EG05034
  40. Sasatani, T (Head Investigator), 2000, Earthquake disaster evaluation based on estimation of deep underground structure and observation of strong ground motion in deep sedimentary basins: A Report of the Study on Fundamental Science with Grant-in-Aid for Scientific Research (B)(2) by the Ministry of Education, No. 10480090, l64pp
  41. Sasatani, T., Yoshida, K., Okada, H., Nakano, 0., Kobayashi, T, and Ling, S., 2001, Estimation of deep subsurface structures and observation of strong ground motions in Sapporo urban districts: J. JSNDS, 20, 325-342
  42. Sheriff, R.E., and Geldart, L.P., 1983, Exploration Seismology, vol. 2: Cambridge University Press
  43. Watson, G.N., 1952, A Treatise on the Theory of Bessel Functions (2th edition): Cambridge University Press
  44. Yaglom, A.M., 1962, An introduction to the theory of stationary random functions (translated and edited by R.A. Silverman): Dover Publications Inc
  45. Yamamoto, H., Iwamoto, K., Saito, T., and Yoshida, A., 1997, Discussion on sensor location in circular array for spatial autocorrelation method: Proceedings of the 96th SEGJ Conference, 444-447
  46. Yamanaka, H., Takemura, M., Ishida, H., Ikeura, T., Nozawa, T, Sasaki, T, and Niwa, M., 1994, Array measurements of long-period microtremors and estimation of S-wave velocity structure in the western part of the Tokyo metropolitan area: Journal of the Seismological Society of Japan, 47,163-172
  47. Yamanaka, H., Sato, H., Kurita, K., and Seo, K., 1999, Array measurements of longperiod microtremors in southwestern Kanto plain, Japan, - Estimation of S-wave profiles in Kawasaki and Yokohama cities: Journal of the Seismological Society of Japan, 51, 355-365