Characterization of Defects in a Synthesized Crystal of Sapphire $({\alpha}-Al_2O_3)$ by TEM

투과전자현미경 조사에 의한 사파이어 $({\alpha}-Al_2O_3)$합성 결정내의 결함특성 분석

  • Published : 2006.09.30

Abstract

The defects in a synthesized crystal of ${\alpha}-Al_2O_3$ used as substrate for growing of semi-conductor materials such as GaN were examined by the conventional transmission electron microscopy (TEM), Large Angle CBED and High-Angle Annular Dark Field (HAADF) STEM methods. The dominant defects found in the specimen are basal microtwins with the thickness of ${\sim}2\;to\;32 nm$ and the associated strong strain field at the interface of microtwin/matrix, basal dislocations and complex dislocations in the one of {$2\bar{1}\bar{1}3$} pyramidal slip plane. All these basal and pyramidal dislocations seem to be strong related to basal microtwins. It was also found that the density of defects is very uneven. In the certain area with the dimension of a few fm, the dislocation density is quite high as an order of ${/sim}10^{10}/cm^2, but the average density is roughly estimated to be less than ${\sim}10^5/cm^2, as is usually expected in general synthesized crystals.

합성 사파이어 기판 시료-GaN반도체의 성장기판으로 사용된-의 내재하는 결함 형태를 전통적인 투과식 전자현미경 조사기법 (TEM), LACBED, HAADF-STEM 방법으로 관찰 분석하였다. 이 시료에서 주로 발견된 결함들은 두께 ${\sim}2nm$에서 32nm를 가진(0001)면 미소 쌍정(basal microtwins), 모체 결정과의 계면 주위의 변형 결함, (0001)면 전위결함(basal dislocations), 그리고 {$2\bar{1}\bar{1}3$} 피라미드 미끄럼면 중 한 면에서 일어나는 복잡한 형태의 전위 결함들이다 이들(0001)면 및 {$2\bar{1}\bar{1}3$}면에 전위 결함들은 미소 쌍정과 강하게 관련되어 일어나는 것으로 보인다. 또한 전위결함 밀도는 매우 균일하지 않으며 수 ${\mu}m$의 크기의 결함 밀집 영역에서는 그 밀도가 ${\sim}10^{10}/cm^2정도만큼 높지만 시료 전체에서의 평균은 대체적으로 ${\sim}10^5/cm^2보다 작다. 이 값은 보통 합성되는 결정에서 평균적으로 예상되는 수치이다.

Keywords

References

  1. Bilde-sorensen JB, Lawlor BF, Geipel T, Pirouz P, Heuer AH, Lagerlof KPD: On basal slip and basal twinning in sapphire $(\alpha-Al_2O_3)$-I. Basal slip revisited. Acta Meter 44 : 2145-2152, 1996 https://doi.org/10.1016/1359-6454(95)00264-2
  2. Bilde-sorensen JB, Tholes AR, Gooch DJ, Groves GW: Structure of the ⁄$<01\bar{1}0>$ dislocation in sapphire. Phil Mag 33 : 877-889, 1976 https://doi.org/10.1080/14786437608221921
  3. Chen SJ, Howitt DG: Observations of partial dislocations and basal twin boundaries in shock-wave-deformed sapphire. Phil Mag A 78 : 765-776, 1998 https://doi.org/10.1080/01418619808241935
  4. Cherns D: TEM characterization of defects, strains and local electric field in AlGaN/InGaN/GaN structures. Mater Sci Eng B91-92 : 274-279, 2002
  5. Cherns D, Preston AR: Convergent beam diffraction studies of interfaces, defects and multilayers. J Electro Micros Tech 13 : 111-122, 1989 https://doi.org/10.1002/jemt.1060130204
  6. Chou CT, Preston AR, Steeds JW: Dislocation contrast in large angle convergent-beam electron beam diffraction patterns. Phil Mag A 65 : 863-888, 1992 https://doi.org/10.1080/01418619208205595
  7. Geipel T, Bilde-sorensen JB, Lawlor BF, Pirouz P, Lagerlof KPD, Heuer AH: On basal slip and basal twinning in sapphire $(\alpha-Al_2O_3)$-III. HRTEM of the twin/matrix interface. Acta Meter 44 : 2165-2174, 1996 https://doi.org/10.1016/1359-6454(95)00288-X
  8. Heuer AH, Lagerlof KPD, Casting J: Slip and twinning dislocation in sapphire $(\alpha-Al_2O_3)$. Phil Mag A 78 : 747- 763, 1998 https://doi.org/10.1080/01418619808241934
  9. Phillips DS, Mitchell TE, Heuer AH: Climb dissociation of dislocations in sapphire $(\alpha-Al_2O_3)$ revisited: crystallography of dislocation dipoles. Phil Mag A 45 : 371-385, 1982 https://doi.org/10.1080/01418618208236177
  10. Hirth JP, Lothe J: Theory of Dislocation. McGraw-Hill, Inc. 1968
  11. Kim HS: On the LABED method to determine the nature of the dislocation defect in crystalline materials. K J Electro Micros 35 : 253-262, 2005. (Korean)
  12. Kim HS, Song SA: An investigation of the nature of dislocation defects in a $\alpha-Al_2O_3$ thin crystal with LACBED method. The 36rd KSEM meeting at Chosun Univ., Nov. 2005
  13. Kronberg ML: Plastic deformation of single crystals of sapphire: Basal slip and twinning. Acta Metall 5 : 507-524, 1957 https://doi.org/10.1016/0001-6160(57)90090-1
  14. Lagerlof KPD, Heuer AH: Slip and twinning in sapphire $(\alpha-Al_2O_3)$. J Am Ceram Soc 77 : 385-397, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb07006.x
  15. Lagerlof KPD, Mitchell TE, Heuer AH, Riviere JP, Cadoz J, Casting J, Phillips DS: Stacking fault energy in sapphire $(\alpha-Al_2O_3)$. Acta Metall 32 : 97-105, 1984 https://doi.org/10.1016/0001-6160(84)90206-2
  16. Liliental-Weber Z, Zakharov D, Jasinski J, O'Keefe MA, Morkoc H: Screw dislocations in GaN grown by different methods. Microsc Microanal 10 : 47-54, 2004 https://doi.org/10.1017/S1431927604040309
  17. Liliental-Weber Z, Jasinski J, Washburn J, O'Keefe MA: Screw dislocation in GaN. Microsc. Microanal 8 (Suppl. 2): 1198CD-1199CD, 2002
  18. Mitchell TE , Pletka BJ, Phillips DS, Heuer AH: Climb dissociation of dislocations in sapphire $(\alpha-Al_2O_3)$. Phil Mag 34 : 441-451, 1976 https://doi.org/10.1080/14786437608222034
  19. Nakamura A, Yamamoto T, Ikuhara Y: Direct observation of basal dislocation in sapphire by HRTEM. Acta Mater 50 : 101-108, 2002 https://doi.org/10.1016/S1359-6454(01)00318-4
  20. Pletka BJ, Mitchell TE, Heuer AH: Dislocation substructures in doped sapphire $(\alpha-Al_2O_3)$ deformed by basal slip. Acta Metall 30 : 147-156, 1982 https://doi.org/10.1016/0001-6160(82)90054-2
  21. Tomokio Y, Kuroiwa T, Kinoshita C: Defects occurring at or near surfaces in $\alpha-Al_2O_3$ during electron irradiation. Ultramicroscopy 39 : 213-221, 1991 https://doi.org/10.1016/0304-3991(91)90200-P
  22. Tomokiyo Y, Manabe T, Kinoshita C: Structual change induced near surfaces of in $\alpha-Al_2O_3$ during electron irradiation. Microsc Microanal Mictrostuct 4 : 331-339, 1993 https://doi.org/10.1051/mmm:0199300402-3033100
  23. Xiao J, Yin S, Shao M, Zang X: Observation of dislocation etch pits in a sapphire crystal grown by Cz method using environmental SEM. J Crystal Growth 266 : 519-522, 2004 https://doi.org/10.1016/j.jcrysgro.2004.03.021