기생 패치 면을 갖는 이중 대 역 원형 마이크로스트립 패치 안테나

Dual-Band Circle Microstrip Patch Antenna with Parasitic Patch

  • Noh Seung-Jin (Dept. of Electronic Computer and Communication Eng., Cheongju University) ;
  • Shin Heai-Young (Dept. of Electronic Computer and Communication Eng., Cheongju University) ;
  • Kim Young-Sang (Dept. of Electronic Computer and Communication Eng., Cheongju University) ;
  • Kim Nam-Soo (Dept. of Electronic Computer and Communication Eng., Cheongju University)
  • 발행 : 2006.07.01

초록

본 논문에서는 기생 패치를 이용하여 위성 DMB(Digital Multimedia Broadcasting) 와 ITS (Intelligent Transport System) 서비스를 동시에 수신할 수 있는 이중 대역 안테나의 구조를 제안하고, 실제 제작을 통하여 성능을 확인하였다. 제작한 이중 모드 안테나는 위성 DMB 수신안테나와 ITS 수신안테나가 각각 약 380 MHz 와 600 MHz 의 -10 dB 대역폭을 갖고, 최소 반사 손실은 약 -27 dB 와 -17 dB 로 측정되었으며, 이는 시뮬레이션 결과와 잘 일치하였다. 위성 DMB 수신안테나의 경우, 중심 주파수 2.6 GHz 에서 수평면에서는 무지향성을 갖고 수직면에서는 ${\theta}$$45^{\circ}$일 때 최대 이득 약 4.2 dBi 를 갖는 원추형 방사 패턴을 가졌다. ITS 수신안테나의 경우에는 중심 주파수 5.8 GHz 에서 ${\theta}$$0^{\circ}$일 때 최대 이득 약 6.4 dBi를 갖는 지향성 방사 패턴을 가졌다.

In this paper, we propose and fabricate the dual-band microstrip patch antenna with parasitic patch for S-DMB(Satellite-Digital Multimedia Broadcasting) and ITS (Intelligent Transport System) services. The measured - 10 dB bandwidth and the minimum return loss is 300 MHz and - 27 dB for S-DMB, 600 MHz and -17 dB for ITS, respectively. It is noticed that the measured and simulated results are agreed well. The S-DMB antenna has conical beam pattern in the vertical plane and has omni-directional beam pattern in the horizontal plane. The conical beam pattern has the maximum gain about 4.2 dBi when ${\theta}$ is $45^{\circ}$ at the center frequency of 2.6 GHz. The ITS antenna has directional beam pattern in the vertical plane that has maximum gain about 6.4 dBi when ${\theta}$ is $0^{\circ}$ at the center frequency of 5.8 GHz.

키워드

참고문헌

  1. H. Okado, 'A 2.4 and 5 GHz dual band antenna', IEEE Antenna and Propagation Society International Symposium, vol. 3, pp. 2596-2598, Jun. 2004
  2. Soon Ho Hwang, Young Jun Cho, and Seong Ook Park, 'An internal dual band antenna for bluetooth/DMB application', IEEE Antenna and Propagation Society International Symposium, vol. 2B, pp. 535-538, Jul. 2005
  3. J. Huang, 'Circularly polarized conical patterns from circular microstrip antennas', IEEE Transactions on Antennas and Propagation, vol. 32, no. 9, pp. 991-994, Sep. 1984 https://doi.org/10.1109/TAP.1984.1143455
  4. A. Derneryd, 'Analysis of the microstrip disk antenna element', IEEE Transactions on Antennas and Propagation, vol. 27, no. 5, pp. 660-664, Sep. 1979 https://doi.org/10.1109/TAP.1979.1142159
  5. Constatine A. Balanis, Antenna Theory Analysis and Design, Wiley, 1997
  6. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001
  7. J. R. James, P. S. Hall, and C. Wood, Handbook of Microstrip Antennas, Peter Peregrinus, 1989
  8. Gh. Rafi, L. Shafai, 'Broadband microstrip patch antenna with V-slot', IEE Proceedings on Microwave Antennas and Propagation, Proc., vol. 151, no. 5, pp. 435-440, Oct. 2004 https://doi.org/10.1049/ip-map:20040846
  9. Kwok Wa Leung, Hoi Kuen Ng, 'The slot-coupled hemispherical dielectric resonator antenna with a parasitic patch: applications to the circularly polarized antenna and wide-band antenna', IEEE Transactions on Antennas and Propagation, vol. 53, vol. 5, pp. 1762-1769, May 2005 https://doi.org/10.1109/TAP.2005.846731
  10. S. Y. Eom, S. I. Jeon, and A. V. Shishlov, 'High gain radiating structure using multi-layered metallic disks', IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 1595-1598, Jun. 2004
  11. High-Frequency structure Simulator(HFSS) Ansoft Corp., Ver. 9.0, [Online]. Avilable: www.ansoft.com