Abstract
In this paper, we describe the design and the implementation of word clustering system using a definition of an entry word in the dictionary, called a dictionary definition. Generally word clustering needs various features like words and the performance of a system for the word clustering depends on using some kinds of features. Dictionary definition describes the meaning of an entry in detail, but words in the dictionary definition are implicative or abstractive, and then its length is not long. The word clustering using only features extracted from the dictionary definition results in a lots of small-size clusters. In order to make large-size clusters and improve the performance, we need to transform the features into more general words with keeping the original meaning of the dictionary definition as intact as possible. In this paper, we propose two methods for extending the dictionary definition using ontology. One is to extend the dictionary definition to parent words on the ontology and the other is to extend the dictionary definition to some words in fixed depth from the root of the ontology. Through our experiments, we have observed that the proposed systems outperform that without extending features, and the latter's extending method overtakes the former's extending method in performance. We have also observed that verbs are very useful in extending features in the case of word clustering.
이 논문은 사전의 뜻 풀이말을 이용하여 단어 군집화 시스템을 설계하고 구현한다. 군집화를 위해서는 다양한 형태의 자질이 요구되며 어떤 자질을 사용하느냐에 따라 군집화의 성능이 좌우된다. 뜻 풀이말은 표제어를 자세히 설명하고 있기는 하지만, 뜻 풀이말에 사용된 단어가 너무 함축적이거나 추상적이어서 뜻 풀이말이 그다지 길지 않다. 뜻 풀이말로부터 추출된 자질을 그대로 군집화에 이용할 경우에는 다수의 작은 군집이 형성된다. 뜻 풀이말을 이용하여 보다 더 좋은 군집화 결과를 얻기 위해서는 뜻 풀이말의 의미를 크게 손상하지 않는 범위에서 보다 더 일반적인 단어로 바꾸어 군집화에 필요한 자질을 확장할 필요가 있다. 이 논문에서 추상적인 말을 온톨로지 상에서 한 단계 위의 단어로 확장하거나 온톨로지 상에서 고정 높이에 해당하는 단어로 확장함으로써 단어 군집화 성능을 향상시키는 방법을 제안한다. 실험을 통해서 온톨로지를 이용해서 자질을 확장할 경우 단어 군집화 성능이 크게 개선되었으며, 전체적으로 보면 온톨로지 상에서 고정 높이에 해당하는 단어로 확장할 경우가 더 좋은 성능을 보였다. 또한 단어 군집화를 위한 자질로 동사가 매우 유용함을 관찰할 수 있었다.