INFLUENCE ANALYSIS FOR GENERALIZED ESTIMATING EQUATIONS

  • Jung Kang-Mo (Department of Informatics and Statistics, Kunsan National University)
  • Published : 2006.06.01

Abstract

We investigate the influence of subjects or observations on regression coefficients of generalized estimating equations using the influence function and the derivative influence measures. The influence function for regression coefficients is derived and its sample versions are used for influence analysis. The derivative influence measures under certain perturbation schemes are derived. It can be seen that the influence function method and the derivative influence measures yield the same influence information. An illustrative example in longitudinal data analysis is given and we compare the results provided by the influence function method and the derivative influence measures.

Keywords

References

  1. CHRISTENSEN, R., PEARSON, L. M. AND JOHNSON, W. (1992). 'Case-deletion diagnostics for mixed models', Technometrics, 34, 38-45 https://doi.org/10.2307/1269550
  2. COOK, R. D. AND WEISBERG, S. (1982). Residuals and Influence in Regression, Chapman & Hall, London
  3. CRITCHLEY, F. (1985). 'Influence in principal components analysis', Biometrika, 72, 627-636 https://doi.org/10.1093/biomet/72.3.627
  4. DIGGLE, P. J., HEAGERTY, P. J., LIANG, K.-Y. AND ZEGER, S. L. (2002). Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford
  5. DAVIS, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements, Springer-Verlag, New York
  6. DE GRUTTOLA, V., WARE, J. H. AND LOUIS, T. A. (1987). 'Influence analysis of generalized least squares estimators', Journal of the American Statistical Association, 82, 911-917 https://doi.org/10.2307/2288804
  7. HAMPEL, F. R. (1974). 'The influence curve and its role in robust estimation', Journal of the American Statistical Association, 69, 383-393 https://doi.org/10.2307/2285666
  8. HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. AND STAHEL, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons, New York
  9. LIANG, K.-Y. AND ZEGER, S. L. (1986). 'Longitudinal data analysis using generalized linear models', Biometrika, 73, 13-22 https://doi.org/10.1093/biomet/73.1.13
  10. MCCULLAGH, P. AND NELDER, J. A. (1989). Generalized linear models, Chapman & Hall, New York
  11. PREISSER, J. S. AND QAQISH, B. F. (1996). 'Deletion diagnostics for generalized estimating equations', Biometrika, 83, 551-562 https://doi.org/10.1093/biomet/83.3.551
  12. THALL, P. F. AND VAIL, S. C. (1990). 'Some covariance models for longitudinal count data with overdispersion', Biometrics, 46, 657-671 https://doi.org/10.2307/2532086