DOI QR코드

DOI QR Code

전기도금법과 전기선폭발법을 이용한 Al-Cu 합금 나노분말제조

The Fabrication of Al-Cu Alloy Nano Powders by a New Method Combining Electrodeposition and Electrical Wire Explosion

  • 박제신 (한국지질자원연구원 자원활용소재연구부) ;
  • 서창열 (한국지질자원연구원 자원활용소재연구부) ;
  • 장한권 (한국지질자원연구원 자원활용소재연구부) ;
  • 이재천 (한국지질자원연구원 자원활용소재연구부) ;
  • 김원백 (한국지질자원연구원 자원활용소재연구부)
  • Park Je-Shin (Minerals and materials processing Division Korea Institute of Geoscience, Mining and Materials) ;
  • Suh Chang-Youl (Minerals and materials processing Division Korea Institute of Geoscience, Mining and Materials) ;
  • Chang Han-Kwon (Minerals and materials processing Division Korea Institute of Geoscience, Mining and Materials) ;
  • Lee Jae-Chun (Minerals and materials processing Division Korea Institute of Geoscience, Mining and Materials) ;
  • Kim Won-Baek (Minerals and materials processing Division Korea Institute of Geoscience, Mining and Materials)
  • 발행 : 2006.06.01

초록

Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and $CuAl_2$ were the major phases. As the Cu layer becomes thicker, Al diminished while $Al_4Cu_9$ phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.

키워드

참고문헌

  1. Y.S. Kwon, Y.H. Jung, N.A. Yavorovsky, A.P. Illyn, and J.S. Kim: Scripta Mater, 44 (2001) 2247 https://doi.org/10.1016/S1359-6462(01)00757-6
  2. S. Dong, G Zou and H. Yang: Scripta Mater., 44 (2001) 17 https://doi.org/10.1016/S1359-6462(00)00552-2
  3. Y.S. Kwon, A.A. Gromov, A.P. Ilyin, E.M. Popenko, GH. Rim: Combustion and Flame, 133 (2003) 385 https://doi.org/10.1016/S0010-2180(02)00564-3
  4. A.A. Gromov, U. Forter-Barth, U. Teipel: Powder Technology, 164 (2006) 111 https://doi.org/10.1016/j.powtec.2006.03.003
  5. S. Dong, P. Hou, H. Yang, and G. Zou: Intermetallics, 10 (2002) 217 https://doi.org/10.1016/S0966-9795(01)00109-1
  6. Y.S. Kwon, A.A. Gromov, A.P. Ilyin, A.A. Ditts, J.S. Kim, S.H. Park, M.H. Hong: Int.J. Refract. Met. Hard Mater, 22 (2004) 235 https://doi.org/10.1016/j.ijrmhm.2004.06.005
  7. W. Fu, H. Yand, L. Chang, M Li, H.Bala, Q. Yu and G. Zou: Colloids and Surfaces, 262 (2005) p.71 https://doi.org/10.1016/j.colsurfa.2005.03.028
  8. J.H. Park, Y.R. Uhm, K.H. Kim, W.W. Kim and C.K. Rhee, J. of Korean Powder Metal1ury Institute, 10 (2003) 83 https://doi.org/10.4150/KPMI.2003.10.2.083
  9. Q. Wang, H. Yang, J. Shi, G. Zou: Materials Science and Engineering A, 307 (2001) 190
  10. Y. Fu and C. Sherwood: Scrpita Mater, 50 (2004) 319 https://doi.org/10.1016/j.scriptamat.2003.10.018
  11. Binary Alloy Phase Diagrams, American Society for Metals, Metals Park OH, 1986
  12. M. Draissia, and M.Y. Debili: J. of Crystal Growth, 270 (2004) 250 https://doi.org/10.1016/j.jcrysgro.2004.06.003
  13. M. Aravind, P. Yu, M.Y. Yau, D.H.L. Ng: Materials Science and Engineering A, 380 (2004) 384 https://doi.org/10.1016/j.msea.2004.04.013