DOI QR코드

DOI QR Code

The Characteristics of Electrokinetic Remediation of Unsaturated Soil II : Numerical Analysis

불포화토의 동전기 정화 특성 II : 수치 해석적 연구

  • 김병일 ((주)이제이텍 기술연구소) ;
  • 한상재 (한양대학교 공학기술연구소) ;
  • 김수삼 (한양대학교 토목.환경공학과)
  • Received : 2005.07.25
  • Accepted : 2005.11.02
  • Published : 2006.01.31

Abstract

The numerical analysis to predicting the electrokinetic remediation behavior on unsaturated soil is carried out by aiding HERO, Hanyang Unversity Electrokinetic Remediation program, developed from the finite difference method and in the VISUAL FORTRAN environment. The analysis for the pure kaolinite under saturated conditions is performed on the results of the previous study of Acar (1997). Also the predictions to the characteristics of electrokinetic remediation on unsaturated conditions are performed and the conclusions summarized as follows. First, pH of the electrolyte in the reservoirs is not different with the degree of saturation resulted from the changes in electrical efficiency. But the advance of acid front is increased dependent on the degree of saturation in contrary to the transportation of base front. Second, below the degree of saturation of 83%, which is equivalent to the optimum water content, the removal effect increased with the decreasing of degree of saturation. But it have no effect on the efficiency of removal over the degree of saturation of 83%.

불포화 자연토에서의 E/K 영향 인자별 정화 특성을 예측하기 위해 지배방정식을 확립하였고, 유한차분해석 기법의 적용을 위한 정식화를 수행하였다. 유한차분화된 지배방정식을 사용하여 HERO를 개발하였고, 개발된 프로그램을 기존 문헌에 제시된 결과에 대하여 검증하였다. 검증 완료된 HERO를 이용하여 불포화 자연토의 E/K 정화 특성을 예측한 결과, 전압경사 1V/cm의 조건에서 전류효율의 변화로 인하여 포화도에 따른 양극(兩極) 저수조 전해질의 pH에는 큰 변화가 없었다. 포화도가 증가할수록 산전선의 이동거리는 증가하는 것으로 나타났지만, 염기전선의 이동은 큰 변화를 보이지 않았다. 또한, 시료내 잔류 납 농도로부터 산정된 포화도별 제거율은 포화도가 증가할수록 감소하는 것으로 나타났지만, 포화도가 최적 함수비에 해당되는 약 83% 이상이 되면 큰 변화를 보이지 않는 것으로 예측되었다.

Keywords

References

  1. 김병일 (2005) 중금속으로 오염된 불포화토의 동전기 정화 특성, 박사학위논문, 한양대학교
  2. 환경부 (1997) 토양측정망 운영결과
  3. Acar, Y. B., Alshawabkeh, A. N., and Gale, R. (1993)Fundamentals of extracting species from soils by electrokinetics, Waste Management, Pregamon Press, London, Vol. 12, No.3, pp
  4. Y. B., Alshawabkeh, A. N., and Parker, R. A. (1997) Theoretical and Experimental Modeling of Multi-species Transport in Soils Under Electric Fields, US EPA/600/R-97/054
  5. Acar, Y. B. and Alshawabkeh, A. N. (1996a) Electrokinetic remediation. I: Pilot-Scale tests with lead-spiked kaolinite, Journal of Geotechnical Engineering, Vol. 122, No.3, pp. 173-185 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  6. Acar, Y. B. and Alshawabkeh, A. N. (1996b) Electrokinetic remediation. II: Theoretical model, Journal of Geotechnical Engineering, Vol. 122, No.3, pp. 186-196 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(186)
  7. Chang, J. H. (2000) Removal of selected nonionic organic compounds from soils by electrokinetic process, Ph.D Thesis, University of Delaware
  8. Eykholt, G R. (1992) Driving and complicating features of the electrokinetic treatment of contaminated soils, Ph.D Thesis, University of Texas at Austin, p. 269
  9. Gray, D. H. (1966) Coupled flow phenomena in clay-water system, Ph.D Thesis, University of California, Berkeley
  10. Hamed, A. and Gale, G. J. (1991) Pb(II) removal from kaolinite by electrokinetics, Journal of Geotechnical Engineering, ASCE, Vol. 117, No.2, pp. 241-271 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(241)
  11. Helmholtz, H. L. F. von (1879) Studies of electric boundary layers, Wied. Ann., Vol. 7, pp. 337-382
  12. Lewis, R. W. and Gamer, R. W. (1972) A finite element solution of coupled electrokinetic and hydrodynamic flow in porous media, International Journal for Numerical Materials in Engineering, Vol. 5, pp. 41-55 https://doi.org/10.1002/nme.1620050105
  13. Lewis, R. W. and Humpheson, C. (1973) Numerical analysis of electro-osmotic flow in soils, Journal of Soil Mechanics and Foundation, Vol. 99, SM 8, pp. 603-616
  14. Mattson, E. D., Bowman, R. S., and Lindgren, E. R. (2002a) Electrokinetic ion transport through unsaturated soil: I. Theory, model development, and testing, Journal of Contaminant Hydrology, Vol. 54, pp. 99-120 https://doi.org/10.1016/S0169-7722(01)00144-9
  15. Mattson, E. D., Bowman, R. S., and Lindgren, E. R. (2002b) Electrokinetic ion transport through unsaturated soil: 2. Application to a heterogeneous field site, Journal of Contaminant Hydrology, Vol. 54, pp. 121-140 https://doi.org/10.1016/S0169-7722(01)00145-0
  16. Mitchell, J. K. (1993) Fundamental of soil behaviors, 2nd edition, John Wiley & Sons, Inc
  17. Pamukcu, S. (1997) Electro-chemical technologies for in-situ restoration of contaminated subsurface soils, The Electronic Journal of Geotechnical Engineering, Vol. 2
  18. Smoluchowski, N. von (1921) Handbuchder electrizitat und des magnetismus, Barth, J. A. ed., Leipzig, Germany, Vol. 2, pp. 366-428
  19. Yong, R. N., Warkentin, B. P. Phadungchewit, Y., and Galves, R. (1990) Buffer capacity and lead retention in some clay materials, Water, Air, and Soil Pollution, No. 53, pp. 53-67