Viscoelastic and Gelation Studies of SEBS Thermoplastic Elastomer in Different Hydrocarbon Oils

  • Kim Jin-Kuk (Department of Polymer Science and Engineering, Research Institute of Industrial Technology, Gyeongsang National University) ;
  • Paglicawan Marissa A. (Department of Polymer Science and Engineering, Research Institute of Industrial Technology, Gyeongsang National University) ;
  • Balasubramanian Maridass (Department of Polymer Science and Engineering, Research Institute of Industrial Technology, Gyeongsang National University)
  • Published : 2006.06.01

Abstract

Poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) triblock copolymer was studied by dissolving the ethylene butylene midblock in selective hydrocarbon oils. These oils differ in their aromatic, paraffinic and naphthenic content. Dynamic rheological studies showed that the storage modulus (G') exceeded the loss modulus (G') for all the gels over the entire range of frequency, thereby confirming them as physical gels. However, the behavior of G' and G' as a function of frequency depended primarily on the oil type. The gelation melting temperature decreased drastically with increased oil aromaticity. Small angle X-ray scattering studies revealed that the maximum interdomain interference shifted to a higher angle depending on the composition and type of hydrocarbon oil.

Keywords

References

  1. M. J. Moic and L. A, Pottick, Polym. Eng. Sci., 33, 819 (1993) https://doi.org/10.1002/pen.760331306
  2. J. P. Gramara, US Patent 5149736 (1992)
  3. Shell Technical Bulletins SC 1102-89 and SC 198-92
  4. L. S. Flosenzie and J. M. Torkelson, Macromolecules, 25, 735 (1992) https://doi.org/10.1021/ma00028a036
  5. N. Mischenko, K. Reynders, K. Mortensen, R. Scherenberg, F, Fontaine, R. Graulus, and H. Reynaers, Macromolecules, 27, 2345 (1994) https://doi.org/10.1021/ma00086a061
  6. N. Mischenko, K. Reynders, M. H. J. Koch, K. Mortensen, J. S. Pedersen, F. Fontaine, R. Graulus, and H. Reynaers, Macromolecules, 28, 2054 (1995) https://doi.org/10.1021/ma00110a045
  7. K. Reynders, K. Mischennko, K. Mortensen, N. Overbergh, and H. Reynaers, Macromolecules, 28, 8699 (1995) https://doi.org/10.1021/ma00129a035
  8. J. H. Laurer, R. Bukovnik, and R. J. Sponatak, Macromolecules, 29, 5760. (1996) https://doi.org/10.1021/ma9607271
  9. R. Kleppinger, K. Reynders, N. Mischenko, N. Overbergh, M. H. J. Koch, K. Mortensen, and H. Reynaers, Macromolecules, 30, 7008 (1997) https://doi.org/10.1021/ma9703968
  10. R. Kleppinger, E. S. M. Van, N. Mischenko, M. H. J. Koch, and H. Reynaers, Macromolecules, 31, 5805 (1998) https://doi.org/10.1021/ma9801164
  11. R. Kleppinger, N. Mischenko, H. Reynaers, and M. H. J. Koch, J. Polym. Sci.; Part B: Polym. Phys., 37, 1833 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990801)37:15<1833::AID-POLB7>3.0.CO;2-7
  12. N. Mashita and Y. Fukahori, Polym. J., 34, 719 (2002) https://doi.org/10.1295/polymj.34.719
  13. J. H. Laurer, J. F Mulling, S. A. Khan, R. J. Spontak, and R. J. Bukovnik, J. Polym. Sci.; Part B: Polym. Phys., 36, 2379 (1998) https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2379::AID-POLB13>3.0.CO;2-0
  14. J. H Laurer. J. F. Mulling, R. J. Khan, S. A. Spontak, J. S. Lin, and R. J. Bukovnik, J. Polym. Sci.; Part B: Polym. Phys., 36, 2513 (1998) https://doi.org/10.1002/(SICI)1099-0488(199810)36:14<2513::AID-POLB5>3.0.CO;2-T
  15. H. Soenen, H. Berghmans, H. H. Winter, and N. Overbergh, Polymer, 38, 5653 (1997) https://doi.org/10.1016/S0032-3861(97)00109-2
  16. H. Soenen, A. Liskova, K. Reynders, H. Berghmans, H. H.Winter, and N. Overbergh, Polymer, 38, 5661(1997) https://doi.org/10.1016/S0032-3861(97)00107-9
  17. J. R. Quintana, E. Diaz, and I. Katime, Macromolecules, 30, 3507 (1997) https://doi.org/10.1021/ma961597z
  18. J. R. Quintana, E. Hernaez, and I. Katime, J. Phys. Chem. B, 105, 2966 (2001) https://doi.org/10.1021/jp003942z
  19. Kraton Fact sheets K0026 Global (2003)
  20. M. Nguyen-Misra and W. L. Mattice, Macromolecules, 28, 1444 (1995) https://doi.org/10.1021/ma00109a015
  21. G. M. Kavanagh and S. B. Ross-Murphy, Prog. Polym. Sci., 23, 533 (1998) https://doi.org/10.1016/S0079-6700(97)00047-6
  22. M. Rubinstein and R. H. Colby, Polym. Phys., Oxford University Press, N.Y, 2004, Chapter 7, p. 253
  23. A.T Granger, S. Krause, and L. J. Fetters, Macromolecules, 20, 1421 (1987) https://doi.org/10.1021/ma00172a046
  24. J. R. Quintana, E. Hernaez, and I. Katime, Polym. Int., 51, 607 (2002) https://doi.org/10.1002/pi.919
  25. U. Jeng, C. H. Hsu, Y. S. Sun, Y. H. Lai, W. T. Chung, H. S. Sheu, H. Y. Lee, Y. F. Song, K. S. Liang, and T. L. Lin, Macromol. Res., 13, 506 (2005) https://doi.org/10.1007/BF03218488
  26. L. Yang, Macromol. Res., 13, 538 (2005) https://doi.org/10.1007/BF03218493
  27. H. Lee, H. B. Kim, A. T. Lim, H. S. Kim, Y. K. Kwon, and H. J. Choi, Macromol. Chem. Phys., 207, 444 (2006) https://doi.org/10.1002/macp.200500445