Overproduction of Cellulose in Acetobacter xylinum KCCM 10100 Defective in GDP-Mannosyltransferase

  • Park Sang-Tae (Children's Hospital Boston, Harvard Medical School) ;
  • Kim Eung-Bin (Department of Biology and Institute of Life Science and Biotechnology, Yonsei University) ;
  • Kim Young-Min (Department of Biology and Institute of Life Science and Biotechnology, Yonsei University)
  • Published : 2006.06.01

Abstract

GDP-mannosyltransferase (GMT) is an enzyme responsible for the addition of a mannose to glucose ($\alpha$[1$\rightarrow$3]) during biosynthesis of the water-soluble branched polysaccharide acetan in Acefobacter species. In an effort to obtain a cellulose-overproducing bacterium, a mutant defective in GMT of Acetobacter xylinum KCCM 10100 was constructed by single crossover homologous recombination using part of the aceA gene encoding GMT amplified by polymerase chain reaction. The GMT-disrupted mutant produced 23% more cellulose, but 16% less water-soluble polysaccharide than those of the wild-type strain. Analysis of the sugar composition by gel permeation chromatography revealed that water-soluble polysaccharides produced by the GMT-defective mutant contained no mannose molecule.

Keywords

References

  1. Aspinall, G. O. 1982. The Polysaccharide. Vols. 1, 2, and 3. Academic Press. New York, U.S.A
  2. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1995. Current Protocols in Molecular Biology. Wiley, Boston, MA, U.S.A
  3. Bae, S., Y. Sugano, and M. Shoda. 2005. Comparison of bacterial cellulose production in a jar fermentor between Acetobacter xylinum BPR2001 and its mutant, acetannonproducing strain EP1. J. Microbiol. Biotechnol. 15: 247-253
  4. Becker, A., K. Niehaus, and A. Puhler. 1995. Low-molecular- weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol. Microbiol. 16: 191-203 https://doi.org/10.1111/j.1365-2958.1995.tb02292.x
  5. Colquhoun, I. J., M. Defernez, and V. J. Morris. 1995. NMR studies of acetan and the related bacterial polysaccharide, CR1/4, produced by a mutant strain of Acetobacter xylinum. Carbohydr. Res. 269: 319-331 https://doi.org/10.1016/0008-6215(94)00367-O
  6. Couso, R. O., L. Ielpi, and M. A. Dankert. 1987. A xanthangum- like polysaccharide from Acetobacter xylinum. J. Gen. Microbiol. 133: 2123-2135
  7. Couso, R. O., L. Ielpi, R. C. Garcia, and M. A. Dankert. 1982. Biosynthesis of polysaccharides in Acetobacter xylinum: Sequential synthesis of a heptasaccharide diphosphate prenol. Eur. J. Biochem. 123: 617-627 https://doi.org/10.1111/j.1432-1033.1982.tb06825.x
  8. Doubois, M., K. A. Gilles, J. K. Hamilton, P. A. Revers, and F. Smith. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28: 350-355 https://doi.org/10.1021/ac60111a017
  9. Griffin, A. M., V. J. Morris, and M. J. Gasson. 1996. Genetic analysis of the acetan biosynthetic pathway in Acetobacter xylinum: Nucleotide sequence analysis of the aceB, aceC, aceD and aceE genes. DNA Seq. 6: 275-284 https://doi.org/10.3109/10425179609020874
  10. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Hestrin, S. and M. Schramm. 1954. Synthesis of cellulose by Acetobacter xylinum. I. Micromethod for the determination of cellulose. Biochem. J. 56: 163-166 https://doi.org/10.1042/bj0560163
  12. Inon de Iannino, N., R. O. Couso, and M. A. Dankert. 1988. Lipid-linked intermediates and the synthesis of acetan in Acetobacter xylinum. J. Gen. Microbiol. 134: 1731-1736
  13. Ishida. T., M. Mitarai, Y. Sugano, and M. Shoda. 2003. Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478 https://doi.org/10.1002/bit.10690
  14. Ishida, T., Y. Sugano, T. Nakai, and M. Shoda. 2002. Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci. Biotechnol. Biochem. 66: 1677-1681 https://doi.org/10.1271/bbb.66.1677
  15. Jansson, P. E., J. Lenberg, K. M. Wimalasiri, and M. A. Dankert. 1993. Structural studies of acetan, an exopolysaccharide elaborated by Acetobacter xylinum. Carbohydr. Res. 245: 303-310 https://doi.org/10.1016/0008-6215(93)80079-T
  16. Legge, R. L. 1990. Microbial cellulose as a specialty chemical. Biotech. Adv. 8: 303-319 https://doi.org/10.1016/0734-9750(90)91067-Q
  17. Park, S. T., T. Song, and Y. M. Kim. 1999. Effect of gluconic acid on the production of cellulose in Acetobacter xylinum BRC5. J. Microbiol. Biotechnol. 9: 683-686
  18. Petroni, E. A. and L. Ielpi. 1996. Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase gene from Acetobacter xylinum. J. Bacteriol. 178: 4814-4821 https://doi.org/10.1128/jb.178.16.4814-4821.1996
  19. Ridout, M. J., G. J. Brownsey, V. J. Morris, and P. Cairns. 1994. Physicochemical characterization of an acetan variant secreted by Acetobacter xylinum strain CR1/4. Int. J. Biol. Macromol. 16: 324-330 https://doi.org/10.1016/0141-8130(94)90064-7
  20. Ross, P., R. Mayer, and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55: 35-58
  21. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Mannual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
  22. Semino, C. E. and M. A. Dankert. 1993. In vitro biosynthesis of acetan using electroporated Acetobacter xylinum cells as enzyme preparations. J. Gen. Microbiol. 139: 2745-2756 https://doi.org/10.1099/00221287-139-11-2745
  23. Shibaev, V. N. 1986. Biosynthesis of bacterial polysaccharide chains composed of repeating units. Adv. Carbohydr. Chem. Biochem. 44: 277-307 https://doi.org/10.1016/S0065-2318(08)60080-3
  24. Yang, Y. K., S. H. Park, J. W. Hwang, Y. R. Pyun, and Y. S. Kim. 1998. Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J. Ferment. Bioeng. 85: 312-317 https://doi.org/10.1016/S0922-338X(97)85681-4