Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression

  • Cheung K.H. (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong) ;
  • Lai H.Y. (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong) ;
  • Gu Ji-Dong (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
  • Published : 2006.06.01

Abstract

Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.

Keywords

References

  1. Ackerley, D. F., C. F. Gonzalez, C. H. Park, R. Blake II, M. Keyhan, and A. Matin. 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl. Environ. Microbiol. 70: 873-882 https://doi.org/10.1128/AEM.70.2.873-882.2004
  2. Ackerley, D. F., C. F. Gonzalez, M. Keyhan, R. Blake II, and A. Matin. 2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 6: 851-860 https://doi.org/10.1111/j.1462-2920.2004.00639.x
  3. Blake II, R. C., D. M. Choate, S. Bardhan, N. Revis, L. L. Barton, and T. G. Zocco. 1993. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem. 12: 1365-1376 https://doi.org/10.1897/1552-8618(1993)12[1365:CTOTMB]2.0.CO;2
  4. Camargo, F. A. O., B. C. Okeke, F. M. Bento, and W. T. Frankenberger. 2003. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by $Cu^{2+}$. Appl. Microbiol. Biotechnol. 62: 569-573 https://doi.org/10.1007/s00253-003-1291-x
  5. Charity, J. C., K. Pak, C. F. Delwiche, and S. W. Hutcheson. 2003. Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: From transposed gene cassettes. Molec. Plant-Microbe Interact. 16: 495-507 https://doi.org/10.1094/MPMI.2003.16.6.495
  6. Cheung, K. H. and J.-D. Gu. 2003. Reduction of chromate ($CrO_{4}^{2-}$) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52: 1523-1529 https://doi.org/10.1016/S0045-6535(03)00491-0
  7. Cheung, K. H. and J.-D. Gu, 2005. Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J. Microbiol. Biotechnol. 21: 213-219 https://doi.org/10.1007/s11274-004-3619-9
  8. Daniels, L., R. S. Hanson, and J. A. Phillips. 1994. Chemical analysis, pp. 512-554. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Kried (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC
  9. Ehrlich, H. L. 2002. Geomicrobiology, p. 768. 4th Ed. Marcel Dekker, New York, U.S.A
  10. Gibb, H. J., P. S. J. Lees, P. F. Pinsky, and B. C. Rooney. 2000. Lung cancer among workers in chromium chemical production. Am. J. Industr. Med. 38: 115-126 https://doi.org/10.1002/1097-0274(200008)38:2<115::AID-AJIM1>3.0.CO;2-Y
  11. Gu, J.-D., R. Mitchell, B. Mitton, and T. E. Ford. 1998. Microbial degradation of polymeric protective coatings determined by the electrochemical impedance spectroscopy. Biodegradation 9: 39-45 https://doi.org/10.1023/A:1008252301377
  12. Ishibashi, Y., C. Cervantes, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268-2270
  13. Kato, H. J. and H. Ohtake. 1991. Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HO1. J. Gen. Appl. Microbiol. 37: 519-522 https://doi.org/10.2323/jgam.37.519
  14. Kwak, Y. H., D. S. Lee, and H. B. Kim. 2003. Vibrio harveyi nitroreductase is also a chromate reductase. Appl. Environ.Microbiol. 69: 4390-4395 https://doi.org/10.1128/AEM.69.8.4390-4395.2003
  15. Michel, C., M. Brugna, C. Aubert, A. Bernadac, and M. Bruschi. 2001. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 55: 95-100 https://doi.org/10.1007/s002530000467
  16. Park, C.-H., D. Gonzalez, D. Ackerley, M. Keyhan, and A. Matin. 2002. Molecular engineering of soluble bacterial proteins with chromate reductase activity, pp. 103-111. In M. Pellei, A. Porta, and R. E. Hinchee (eds.), Remediation and Beneficial Reuse of Contaminated Sediments, vol. 3. Batelle Press, Columbus, Ohio
  17. Park, C. H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin. 2000. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66: 1788-1795 https://doi.org/10.1128/AEM.66.5.1788-1795.2000
  18. Ryan, M. P., D. E. Williams, R. J. Chater, B. M. Hutton, and D. S. McPhail. 2002. Why stainless steel corrodes. Nature (London) 415: 770-774 https://doi.org/10.1038/415770a
  19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Small scale preparations of plasmid DNA, pp. 1.25-31. In N. Ford, C. Nolan, and M. Ferguson (eds.), Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, U.S.A
  20. Shen, H. and Y.-T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 59: 3771-3777
  21. Spiers, A. J., A. Buckling, and P. B. Rainey. 2000. The causes of Pseudomonas diversity. Microbiology 146: 2345-2350 https://doi.org/10.1099/00221287-146-10-2345
  22. Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, and M. Okazaki. 1992. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340-5345 https://doi.org/10.1128/jb.174.16.5340-5345.1992
  23. Turick, C. E., W. A. Apel, and N. S. Carmiol. 1996. Isolation of hexavalent chromium-reducing anaerobes from hexavalentchromium- contaminated and noncontaminated environments. Appl. Microbiol. Biotechnol. 44: 683-688 https://doi.org/10.1007/BF00172503
  24. Urone, P. F. 1955. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Analyt. Chem. 27: 1354-1355 https://doi.org/10.1021/ac60104a048
  25. Venitt, S. and L. S. Levy. 1974. Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature (London) 250: 493-495 https://doi.org/10.1038/250493a0
  26. Wang, Y. 2003. Isolation and characterization of environmental Vibrio species from Mai Po Nature Reserve, Hong Kong. M.Phil. Thesis. Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
  27. Wang, P.-C., T. Mori, K. Toda, and H. Ohtake. 1990. Membrane-associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670-1672 https://doi.org/10.1128/jb.172.3.1670-1672.1990
  28. Xu, X.-R., H.-B. Li, X.-Y. Li, and J.-D. Gu. 2004. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57: 609-613 https://doi.org/10.1016/j.chemosphere.2004.07.031
  29. Zehr, J. P. and R. S. Oremland. 1987. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 53: 1365-1369