Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil

복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구

  • Chung, Doug-Young (Department of Bioenvironmental Chemistry, Chungnam National University) ;
  • Yang, Jae-E. (Division of Biological Environment, Kangwon National University)
  • 정덕영 (충남대학교 농업생명과학대학 생물환경화학전공) ;
  • 양재의 (강원대학교 농업생명과학대학 자원생물환경학과)
  • Received : 2005.11.04
  • Accepted : 2006.01.25
  • Published : 2006.02.28

Abstract

In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

중금속으로 오염된 농경지 토양을 효과적으로 보권하기 위해서는 토양 매체내에서 반응과정을 거치는 중금속의 동태와 이동성에 따라 한 가지 이상의 복원기술이 선택되어야 한다. 오염토양 복원 시 중요한 토양의 물질적 수리적 요인은 투수성, 공극성, 토성과 토양조직, 오염물질의 형태와 농도, 오염물질의 동태와 이동특성이다. 따라서 중금속으로 오염된 농경지 토양에 적용할 수 있는 복합복원기술 개발 방법을 기존의 사용하고 있는 적용 가능한 화학적 기술과 물리적 기술을 중심으로 검토하여 보았다. 심층토내 중금속을 제거하는 화학적 기술로서 토양세척이 있으나 이러한 단일 기술로는 효과적 복원이 어렵다. 따라서 토양세척기술이 가지고 있는 단점을 보완하기 위한 물리적 기술로 토양파쇄 기술이 있다. 그러나 토양세척과 토양파쇄 기술은 혼용하여 오염토양에 적용할 지라도 오염물질제거율은 높은 이류 흐름 지역에서는 확산유동에 의해 비율제한적으로 된다. 그러므로 선택된 두 가지 기술을 현장에서 효과적으로 적용하기 위해서는 오염토양 복원 시 공정별로 각각의 기술이 가지는 장단점을 파악하기 위해서는 기존 현장에서 기술 적용 시 발견된 문제점과 요인들을 검토하여야 한다. 또한 복원의 효율을 예측하기 위해서는 오염물질의 역학적 탈착, 유동과 이동을 포함하는 예상수학모형을 통해 오염토양의 이질성과 복합 반응에 의한 실질 심층토내에서의 유동 경로 정확한 특성을 파악하여야 한다.

Keywords

References

  1. AATDF, 1997. Technology Practices Manual for Surfactants and Cosolvents, Technical Report, Document No. TR-97-2
  2. Allen, J.P. and I.G. Torres. 1991. Physical Separation Techniques for Contaminated Sediment, in Recent Developments in Separation Science, N.N. Li, Ed., CRC Press, West Palm Beach, FL
  3. Andreas V., K. Barmettler, and R Kretzschmar. 2003. Heavy Metal Release from Contaminated Soils : Comparison of Column Leaching and Batch Extraction Results. JEQ. 32:865-875 https://doi.org/10.2134/jeq2003.0865
  4. Bohler, J. B., H. Hotzl, and M. Nahold. 1990. Air injection and soil air extraction as a combined method for cleaning contaminated sites-observations from test sites in sediments and solid rocks, in Contaminated Soil, Arendt, F., Hinsevelt, M., and van der Brink, W. J., Eds., Springer-Verlag, Berlin
  5. DOE. 1995. Development of an Integrated in-situ Remediation Technology, DOE Contract Number: DE-AR21-94MC31185, Monsanto Company
  6. Gale, J. E. 1982. Assessing the Permeability Characteristics of Fractured Rock, Geological Society of America, Special Paper 189
  7. EPA. 1995. In Situ Remediation Technology Status Report: Hydraulic and HPF, EPA/542/K-94/005
  8. EPA. 1998. Guidance for scoping the remedial deign. Engineering Bulletin. EPA, OERR and ORD. Washington, DC. EPA-540/R95/025
  9. EPA. 2004. Best Management Practices for Soil Treatment Technologies: Suggested Operational Guidelines to Prevent Crossmedia Transfer of Contaminants During Clean-UP Activities, EPA OSWER, EPA/530/R-97/007
  10. EPA. 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites EPA OSWER. EPA-540-R-05-012
  11. Hubbert, M. K. and D. G. Willis. 1957. 'Mechanics of Hydraulic Fracturing,' Trans. AIME, Vol. 210, pp. 153-166
  12. King, T. C. 1993. 'Mechanism of HPF,' M.S. Thesis, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ
  13. Lundegard, P. D. and G. Andersen. 1993. Numerical simulation of air sparging performance, Proc. Petroleum Hydrocarbons Organ Chem. Groundwater: Prevention, Detection, Restoration, Houston, TX
  14. Manceau, A., B. Lanson, M.L. Schlegel, J.C. Harge, M. Musso, L.E. Berard, J.L. Hazemann, D. Chateigner, and G.M. Lambie. 2000. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 300:289-343 https://doi.org/10.2475/ajs.300.4.289
  15. McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press. New York
  16. McBride, M.B. 1999. Chemisorption and precipitation reactions. p. B265 B302. In Sumner, M.E. (ed.) Handbook of soil science. CRC Press, Boca Raton, FL
  17. Morin, G., J.D. Ostergren, F. Juillot, P. Ildefonse, G. Calas, and G.E. Brown, Jr. 1999. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes. Am. Mineral. 84:420-434 https://doi.org/10.2138/am-1999-0327
  18. Murdoch, L. C., G. Losonsky, P. Cluxton, B. Patterson, I. Klich, and B. Braswell. 1991. The feasibility of hydraulic fracturing of soil to improve remedial actions. Final report. EPA/600/2-91/012 (NTIS PB9l-181818)
  19. Schuring, J. R., 1994. Pneumatic fracturing to remove soil contaminants, NJIT Res., 2, Spring
  20. Sparks, D. L., L. W. Zelazny, and D. A. Martens. 1980. Kinetics of potassium desorption in soil using miscible displacement. Soil Sci. Soc. Am. J. 44:1205-1208 https://doi.org/10.2136/sssaj1980.03615995004400060014x
  21. Suthersan, S. S. 1999. 'IN SITU Air SPARGING' Remediation engineering: design concepts. Boca Raton: CRC Press LLC
  22. Testa, S. M. 1994. Geological Aspects of Hazardous Waste Management, CRC Press / Lewis Publishers, Boca Raton, Fla., 537p
  23. Testa, S. M., and D. L. Winegardner. 2000. Restoration of Contaminated Aquifers, 2nd edition, CRC Press / Lewis Publishers, Boca Raton, Fla., 446 p
  24. van Genuchten M. Th., and P. J. Wierenga. 1976. Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci. Soc. Am. J. 40:473-48 https://doi.org/10.2136/sssaj1976.03615995004000040011x