먹물버섯의 생성.자가소화 과정에서 laccase 및 chitinase의 발현

Chitinase and Laccase Expression during the Fruit Body Development in Coprinellus Congergatus

  • 김윤정 (강원대학교 생명과학부 생화학과) ;
  • 박혜연 (강원대학교 생명과학부 생화학과) ;
  • 조정원 (인제대학교 생명공학부) ;
  • 최형태 (강원대학교 생명과학부 생화학과)
  • 발행 : 2006.09.30

초록

먹물버섯은 버섯 시원체로부터 버섯이 성숙되는 과정에서 자가소화가 일어나 먹물이라 불리는 검은 액체를 생성한다. 이 과정에서 멜라닌을 생성하는 laccase, 균류 세포벽 성분의 하나인 키틴을 분해하는 chitinase의 관련을 분석하고자 Northern hybridization 방법을 이용하여 유전자의 발현을 분석하였다. 시원체가 생성되고 버섯이 성숙되어 먹물을 생성하는 시기에 따라 멜라닌색소 생성 효소인 laccase와 킨틴분해효소인 chitinase의 발현이 증가하는 것이 확인되었다.

When fruit bodies of Coprinellus congregatus were matured, they were autolysed to form black ink. During the developmental changes, cell walls of basidia were degraded. Laccase formed melanin which was the typical black pigment of fungi, and chitinase hydrolyzed the chitin which was a component of fungal cell wall. When laccase and chitinase genes were used as the probe for the Northern analysis to confirm their expression during the fruit body development, both gene expressions were increased as the mushroom was getting matured.

키워드

참고문헌

  1. 최형태, 조정원. 2005. 먹물버섯의 자가분해 과정에 대 한 미세구조 연구. 미생물학회지 41, 312-325
  2. Casadevall, A., A.L. Rosas, and J.D. Nosanchuk. 2000. Melanin and virulence in Cryptococcus neoformans. Curr. Op. Microbiol. 3, 354-358 https://doi.org/10.1016/S1369-5274(00)00103-X
  3. Cheong, S., S. Yeo, H.G. Song, and H.T. Choi. 2006. Determination of laccase gene expression during degradation of 2,4,6-trinitrotoluene and its catabolic intermediates in Trametes versicolor. Microbiol. Res. Available online on 2006. 1. 19
  4. Han, M.J., H.T. Choi, and H.G. Song. 2004. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42, 94-98
  5. Kamensky, M., M. Ovadis, I. Chet, and L. Chernin. 2003. Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35, 323-331 https://doi.org/10.1016/S0038-0717(02)00283-3
  6. Kim, S., Y. Leem, K. Kim, and H.T. Choi. 2001. Cloning of an acidic laccase gene (clac2) from Coprinus congregatus and its expression by external pH. FEMS Microbiol. Lett. 195, 151-156 https://doi.org/10.1111/j.1574-6968.2001.tb10513.x
  7. Leatham, G.F. and M.A. Stahmann. 1981. Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J. Gen. Microbiol. 125, 147-157
  8. Leem, Y., S. Kim, I.K. Ross, and H.T. Choi. 1999. Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration. FEMS Microbiol. Lett. 172, 35-40 https://doi.org/10.1111/j.1574-6968.1999.tb13446.x
  9. Mellado, E., G. Dubreucq, P. Mol, J. Safati, S. Paris, M. Diaquin, D. Holden, J. Rodriguez-Tudela, and P. Latge. 2003. Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet. Biol. 38, 98-109 https://doi.org/10.1016/S1087-1845(02)00516-9
  10. Moore-Landecker, E. 1990. Fundamentals of the fungi, 3rd ed., p 212. Prentice-Hall, Inc
  11. Nicolaus, R.A. 1962. Biogenesis of melanins. Rassegna Medicina Speerimtale 9 (suppl. 1), 1-32
  12. Scherer, M. and R. Fischer. 1998. Purification and characterization of laccase II of Aspergillus nidulans. Arch. Microbiol. 170, 78-84 https://doi.org/10.1007/s002030050617
  13. Svitil, A. and D. Kirchman. 1998. A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-$\beta$-glycanases. Microbiol. 144, 1299-1308 https://doi.org/10.1099/00221287-144-5-1299
  14. Wang, Y. and A. Casadevall. 1994. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 60, 3864-3866