A comparative study of electroplating and electroless plating for diameter increase of orthodontic wire

교정용 선재의 직경 증가를 위한 전기도금법과 무전해도금법의 비교연구

  • Kim, Jae-Nam (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Sung, Young-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Ki-Heon (Department of Orthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Hwang, Hyeon-Shik (Department of Orthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University)
  • 김재남 (전남대학교 치과대학 교정학교실) ;
  • 조진형 (전남대학교 치과대학 교정학교실) ;
  • 성영은 (서울대학교 공과대학 화학생물공학부) ;
  • 이기헌 (전남대학교 치의학연구소, 전남대학교 치과대학 교정학교실) ;
  • 황현식 (전남대학교 치의학연구소, 전남대학교 치과대학 교정학교실)
  • Published : 2006.04.30

Abstract

The purpose of this study was to evaluate electroless plating as a method of increasing the diameter of an orthodontic wire in comparison with eletroplating. After pretreatment plating of the 0.016 inch stainless steel orthodontic wire, electroless plating was performed at $90^{\circ}C$ until the diameter of the wire was increased to 0.018 inch. During the process of electroless plating, the diameter of the wire was measured every 5 minutes to examine the increasing ratio of the wire's diameter per time unit. And to examine the uniformity, the diameter at 3 points on the electroless-plated orthodontic wire was measured. An X-ray diffraction test for analyzing the nature of the plated metal and a 3-point bending test for analyzing the physical property were performed. The electroless-plated wire group showed a increased tendency for stiffness, yield strength, and ultimate strength than the electroplated wire group. And there was a statistically significant difference between the two groups for stiffness and ultimate strength. In the electroless-plated wire group, the increasing ratio of the diameter was $0.00461{\pm}0.00003mm/5min$ (0.00092 mm/min). In the electroplated wire group, it was $0.00821{\pm}0.00015mm/min$. The results of the uniformity test showed a tendency for uniformity in both the plating methods. The results of this study suggest that electroless plating of the wire is closer to the ready-made wire than electroplating wire in terms of the physical property. However, the length of plating time needs further consideration for the clinical application of electroless plating.

본 연구는 교정용 선재의 직경을 증가시키기 위한 방법으로 무전해도금법의 이용 가능성 여부를 전기도금법과의 비교를 통해 알아보고자 시행되었다. 0.016 인치 스테인레스 스틸 교정용 선재에 도금을 위한 전처리를 시행한 후, 시중에 판매되는 무전해니켈도금액($Hessonic-Gr^{(R)}$, 신풍금속, 한국)을 사용하여 $90^{\circ}C$ 온도에서 0.018 인치 직경이 될 때까지 도금을 시행하였다. 무전해도금 과정 중 시간에 따른 직경증가율을 구하는 한편, 도금 후 세 지점의 직경을 계측하여 균일성을 평가하였다. 도금 금속의 정성분석을 위하여 X-선 회절분석을 시행하는 한편, 물성검사를 시행한 후 전기도금한 경우와 각각 비교 분석하였다. 연구결과 무전해도금한 군이 전기도금을 시행한 군보다 강성, 항복강도, 극한강도 모두 높은 경향을 보였으며 강성과 극한강도에서 통계적으로 유의한 차이를 나타내었다 (p<0.05). 또한 무전해도금한 군의 직경증가율은 $0.00461{\pm}0.00003mm/5min$ (0.00092 mm/min)로, 전기도금한 군의 직경증가율 $0.00821{\pm}0.00015mm/min$와 차이를 보였다. 도금 후 세 지점의 직경을 계측하여 균으성을 평가한 결과, 두 가지 도금법 모두에서 균일한 양상을 보였다. 이상의 결과로 무전해도금법을 통해 직경이 증가된 선재가 전기도금 법에 의해 직경이 증가된 선재보다 기존의 선재와 가까운 물성을 보임을 알 수 있었으며, 이의 임상적 적응을 위해서는 도금시간의 감소가 필요함을 알 수 있었다.

Keywords

References

  1. Burstone CJ. Application of bioengineering to clinical orthodontics. In: Graber TM, Vanarsdall Jr RL, editors. Orthodontics: Current principles and techniques. St. Louis: Mosby; 2005. p. 293-330
  2. Matasa CG. Biomaterials in orthodontics. In: Graber TM, Vanarsdall Jr RL, editors. Orthodontics: Current principles and techniques. St. Louis: Mosby; 2005. p. 345-89
  3. 조진형, 성영은, 이기헌, 황현식. 전기도금을 이용한 스테인레스 스틸 선재의 직경 증가에 관한 실험적 연구. 대치교정지 2003;33:121-30
  4. 이정석, 이기헌, 황현식. 전기도금을 이용한 스테인레스 스틸 각형 선재의 굵기 증가 후 물성 변화. 대치교정지 2003;33:131-40
  5. 염희택, 이주성. 도금.표면처리. 서울: 문운당; 1989
  6. 김남일, 장시성. 무전해도금. 서울: 동화기술; 1996
  7. Schwartz M, Bunshah RF. Deposition from aqueous solutions: an overview. Deposition technologies for films and coatings. New Jersey: Noyes Publications; 1982. p, 385-449
  8. Wurtz A. Electroless plating. Compt Rend Acad Sci 1845;21:145-51
  9. Brenner A, Riddell GE. Reminiscences of early electroless plating. Plat Surf Finish 1984;71:24-9
  10. West HJ. Studies on electroless nickel plating. Met Finish 1953;53:68-75
  11. Pearlstein F. Electroless plating of non-steel metal. Met Finish 1955;55:59-64
  12. Kim M, Kwon SC. Review on electroless plating(I). Met Finish Soc Korea 1986;19:121-7
  13. Kim M, Kwon SC. Review on electroless plating(II), Met Finish Soc Korea 1986;19:155-88
  14. Park HJ, Ohi EK, Kim SG, Yeu T. Electroless nickel plating on alumina powder. J Korea Chem Engin 1994;32:358-66
  15. Kim YD, Lee J. Studies on electroless nickel plating on alumina ceramicst(I) on empirical deposition rate in electroless nickel plating. Met Finish Soc Korea 1986;19:109-22
  16. Mandich NV, Krulik GA. On the mechanisms of plating on plastics. Plat Surf Finish 1993;80:68-73
  17. Mimani T, Mayanna SM. Electroless nickel plating from an acidic tartrate bath. Plat Surf Finish 1991;78:66-9
  18. Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikaw F, et al. Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthod 1999;115:390-5 https://doi.org/10.1016/S0889-5406(99)70257-X
  19. Oltjen JM, Duncanson MG Jr., Ghosh J, Nanda RS, Currier GF. Stiffness-deflection behavior of selected orthodontic wires. Angle Orthod 1997;67:209-18
  20. Kusy RP, Dilley GJ. Elastic modulus of a triple-stranded stainless steel archwire via three- and four-point bending. J Dent Res 1984;63:1232-40 https://doi.org/10.1177/00220345840630101401
  21. Cullity BD, Chemical analysis by X-ray diffraction. In: Elements of X-ray diffraction. California: Addison-Welsey Publishing Com. Inc; 1978. p. 397-420
  22. Andrews LF. The straight-wire appliance, origin, controversy, commentary. J Clin Orthod 1976;10:99-114
  23. Jost-Brinkmann PG, Cacciafesta V, Riemeier F. Lingual treatment with the bending art system. In: Romano R, editor. Lingual orthodontics. London: B. C. Decker; 1998. p. 185-93
  24. Yang CC, Cheh HY. Pulsed electrodeposition of copper/nickel mutilayers on a rotating disk electrode. J Electrochem Soc 1995;142:3040-4 https://doi.org/10.1149/1.2048682
  25. Nagirnyi VM, Chaikovskaya VM. Effect of high-temperature annealing on the strength of adhesion between electroplated nickel coatings and stainless steel support. Russian J App Chem 1998;71:1663-5
  26. Henry J. Electroless plating. Met Finish 1984;84:45-7
  27. Waters NE, Stephens CD, Houston WJ. Physical characteristics of orthodontic wires and archwires. Part I. Br J Orthod 1975;2:15-24 https://doi.org/10.1179/bjo.2.1.15
  28. Williams DW, Fraunhofer JA, Davies EH. Metallurgical characterization of high resilience stainless steel orthodontic wires. J App Chem Biotech 1975;25:913-34
  29. Tonner RI, Waters NE. The characteristics of super-elastic Ni-Ti wires in three-point bending. Part II: intra-batch variation. Eur J Orthod 1994;16:421-5 https://doi.org/10.1093/ejo/16.5.421
  30. Barrett CR, Nix WD, Petelman AS. Introduction to the mechanical properties of solids: The principles of engineering materials. New Jersey: Prentice-Hall Inc; 1973. p. 193-224