DOI QR코드

DOI QR Code

MIMO Variable Structure Control System with Sliding Sector

슬라이딩 섹터를 갖는 다중 입출력 가변 구조 제어 시스템

  • 최한호 (동국대학교 전기공학과)
  • Published : 2006.06.01

Abstract

In this paper, we propose a method to design variable structure systems with sliding sector for multi-input multi-output systems with mismatched uncertainties in the state matrix. For the uncertain systems we define sliding sectors within which a norm of the state decreases with zero input despite of mismatched uncertainties. Using the notion of the sliding sector we give simple design algorithms of variable structure control laws that can reduce the chattering. Finally, we give a design example in order to show the effectiveness of our method.

Keywords

References

  1. K. Furuta and Y. Pan, 'Variable structure control with sliding sector,' Automatica, vol. 36, pp. 211-228, 2000 https://doi.org/10.1016/S0005-1098(99)00116-8
  2. K. Furuta and Y. Pan, 'A new approach to design a sliding sector for VSS controller,' In Proc. of the American Control Conference, pp. 1304-1308, Seattle, USA, 1995 https://doi.org/10.1109/ACC.1995.520961
  3. R. A. D. Carlo, S. H. Zak, and G. P. Matthews, 'Variable structure control of nonlinear multi variable systems: A tutorial,' Proc. IEEE, vol. 76, pp. 212-232, 1988 https://doi.org/10.1109/5.4400
  4. V.I. Utkin, 'Variable structure systems with sliding modes,' IEEE Trans. Automat. Contr., vol. 22, pp. 212-222, 1977 https://doi.org/10.1109/TAC.1977.1101446
  5. R. H. C. Takahashi and P. L. D. Peres, '$H_2$ guaranteed cost-switching surface design for sliding modes with nonmatching disturbances,' IEEE Trans. automat. Contr., vol. 44, pp. 2214-2218, 1999 https://doi.org/10.1109/9.802948
  6. H. H. Choi, 'An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,' Automatica, vol. 34, pp. 1015-1020. 1998 https://doi.org/10.1016/S0005-1098(98)00042-9
  7. S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, SlAM, 1994
  8. T. Iwasaki and R. E. Skelton, 'All controllers for the general $H_{infty}$ control problem: LMI existnce condition and state space formulas,' Automatica, vol. 30, pp. 1307-1317, 1994 https://doi.org/10.1016/0005-1098(94)90110-4
  9. P. P. Khargonekar, I. R. Pertesen, and K. Zhou, 'Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_{\infty}$ control theory,' IEEE Trans. Automat. Contr., vol. 35, pp. 356-361, 1990 https://doi.org/10.1109/9.50357
  10. P. Gahinet, A. Nemirovski, and A. J. Laub, LMI Control Toolbox User's Guide, Natic, MA: The MathWorks lnc., 1995
  11. H. H. Choi, 'Variable structure control of dynamical systems with mismatched norm-bounded uncertainties: an LMI approach,' Int. J Control, vol. 74, pp. 1324-1334, 2001 https://doi.org/10.1080/00207170110061077
  12. K. S. Kim and Y. Park, 'Parametric approaches to sliding mode design for linear multi variable systems,' Int. J. Control, Automation, and systems, vol. 1, pp. 11-18, 2003
  13. E. M. Jafarov, 'Robust sliding mode controllers design techniques for stabilization of multi variable time-delay systems with parameter perturbations and external disturbances,' Int. J. Systems Science, vol. 36, pp. 433-444, 2005 https://doi.org/10.1080/00207720500156363
  14. C. Edwards, 'A practical method for the design of sliding mode controllers using linear matrix inequalities,' Automatica, vol. 40, pp. 1761-1769, 2004 https://doi.org/10.1016/j.automatica.2004.05.004