DOI QR코드

DOI QR Code

Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties

구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기

  • Published : 2006.06.01

Abstract

This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

Keywords

References

  1. D. S. Bernstein and A. N. Michel, 'A chronological biblography on saturating actuators,' International Journal of Robust and Nonlinear Control, vol. 5, pp. 375-380, 1995 https://doi.org/10.1002/rnc.4590050502
  2. W. M. Wonham and C. D. Johnson, 'Optimal bang-bang control with quadratic performance index,' Transactions on ASME, Ser. D, vol. 86, pp. 107-115, 1964 https://doi.org/10.1115/1.3653092
  3. B. Friendland, 'Limiting forms of optimum stochastic linear regulators,' Journal of Dynamic Systems Measurement Control, Transactions on ASME, Ser. G, vol. 93, no. 3, pp. 135-141, 1971
  4. L. Meirovitch, Dynamics and Control of Structures, Wiely, New York, 1990
  5. B. Indrawan, T. Kobori, M. Sakamoto, N. Koshika, and S. Ohrui, 'Experimental verification of bounded-force control method,' Earthquake Engineering and Structural Dynamics, vol. 25, no. 2, pp. 179-193, 1996 https://doi.org/10.1002/(SICI)1096-9845(199602)25:2<179::AID-EQE545>3.0.CO;2-N
  6. J. Mongkol, B. Bhartia, and Y. Fujino, 'On Linear-Saturation(LS) control of buildings,' Earthquake Engineering and Structural Dynamics, vol. 25, pp. 1353-1371, 1996 https://doi.org/10.1002/(SICI)1096-9845(199612)25:12<1353::AID-EQE614>3.0.CO;2-2
  7. Z. Wu and T. T. Soong, 'Modified bang-bang control law for structural control implementation,' Journal Engineering Mechanics, ASCE, vol. 122, pp. 771-777, 1996 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(771)
  8. G. P. Cai, J. Z. Huang, F. Sun, and C. Wang, 'Modified sliding-mode bang-bang control for seismically excited linear structures,' Earthquake Engineering and Structural Dynamics, vol. 29, pp. 1647-1657, 2000 https://doi.org/10.1002/1096-9845(200011)29:11<1647::AID-EQE981>3.0.CO;2-4
  9. J. N. Yang, J. C. Wu, and A. K. Agrawal, 'Sliding mode control for nonlinear and hysteretic structures,' ASCE, Journal of Engineering Mechanics, vol. 121, no. 12, pp. 1330-1339, 1995 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330)
  10. J. N. Yang, J. C. Wu, and A. K. Agrawal, 'Sliding mode control for seismically linear structures,' ASCE, Journal of Engineering Mechanics, vol. 121, no. 12, pp. 1386-1390, 1995 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1386)
  11. P. Gahinet, P. Apkarian, and M. Chilali, 'Affine parameter-dependent lyapunov functions and real parametric uncertainty,' IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 436-442, 1996 https://doi.org/10.1109/9.486646
  12. P. P. Khargonekar, I. R. Petersen, and K. Zhou, 'Robust stabilization of uncertain linear systems : Quadratic stabilizability and $H{\infty}$, control theory,' IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 356-361, 1990 https://doi.org/10.1109/9.50357
  13. P. Gahinet and A. Nemirovski, The LMI Control Toolbox, The MathWorks Inc., 1995