High Productivity of t-PA in CHO Cells Using Hypoxia Response Element

  • Bae Gun-Won (College of Life Sciences and Biotechnology, Korea University) ;
  • Jeong Dae-Won (BK21 HLS, Seoul National University) ;
  • Kim Hong-Jin (Microbiology Section, College of Pharmacy, Chung Ang University) ;
  • Lee Gyun-Min (Department of Biological Sciences, KAIST) ;
  • Park Hong-Woo (Division of Applied Chemical Engineering & Bio Engineering) ;
  • Choe Tae-Boo (Department of Microbiological Engineering) ;
  • Kang Seong-Man (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim Ick-Young (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim Ik-Hwan (College of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.05.01

Abstract

The dissolved oxygen level of any cell culture environment has a critical effect on cellular metabolism. Specifically, hypoxia condition decreases cell viability and recombinant protein productivity. In this work, to develop CHO cells producing recombinant protein with high productivity, mammalian expression vectors containing a human tissue-type plasminogen activator (t-PA) gene with hypoxia response element (HRE) were constructed and stably transfected into CHO cells. CHO/2HRE-t-PA cells produced 2-folds higher recombinant t-PA production than CHO/t-PA cells in a $Ba^{2+}-alginate$ immobilized culture, and 16.8-folds in a repeated batch culture. In a non-aerated batch culture of suspension-adapted cells, t-PA productivity of CHO/2HRE/t-PA cells was 4.2-folds higher than that of CHO/t-PA cells. Our results indicate that HRE is a useful tool for the enhancement of protein productivity in mammalian cell cultures.

Keywords

References

  1. Banik, G. G. and C. A. Heath. 1996. High-density hybridoma perfusion culture: Limitation vs inhibition. Appl. Biochem. Biotech. 61: 211-229
  2. Blanchard, K. L., A. M. Acquaviva, D. L. Galson, and H. F. Bunn. 1992. Hypoxic induction of the human erythropoietin gene: Cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol. Cell. Biol. 12: 5373-5385 https://doi.org/10.1128/MCB.12.12.5373
  3. Butler, M. 1991. The characteristics and growth of cultured cells, pp. 1-25. In Butler, M. (ed.), Mammalian Cell Biotechnology. A Practical Approach. Oxford University Press, Oxford
  4. Carmeliet, P., Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, and E. Keshert. 1998. Role of HIF-1a in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485-490 https://doi.org/10.1038/28867
  5. Clark, G., W. J. Dougherty, and F. H. Kasten. 1981. Staining procedures 4th ed., pp. 34-35. In Clark, G. (ed.), General Methods. Wiliams & Wilkins, Baltimore
  6. Connors, R. W., R. W. Sweet, J. P. Noveral, D. S. Pfarr, J. J. Trill, R. J. Shebuski, B. A. Berkowitz, D. Williams, S. Franklin, and M. E. Reff. 1988. DHFR coamplification of t-PA in $DHFR^+$ bovine endothelial cells: In vitro characterization of the purified serine protease. DNA 7: 651-661 https://doi.org/10.1089/dna.1988.7.651
  7. Fann, C. H., F. Guirgis, G. Chen, M. S. Lao, and J. M. Piret. 2000. Limitation to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol. Bioeng. 69: 204-212 https://doi.org/10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z
  8. Fassnacht, D. and R. Portner. 1999. Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J. Biotechnol. 72: 169-184 https://doi.org/10.1016/S0168-1656(99)00129-7
  9. Goldberg M. A., C. C. Gaut, and H. F. Bunn. 1991. Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77: 271-277
  10. Grohn, P., G. Klock, J. Schmitt, U. Zimmermann, A. Horcher, R. G. Bretzel, B. J. Hering, D. Brandhorst, H. Brandhorst, and T. Zekorn. 1994. Large-scale production of $Ba^{2+}$-alginate-coated islets of Langerhans for immunoisolation. Exp. Clin. Endocrinol. 102: 380-387 https://doi.org/10.1055/s-0029-1211308
  11. Hu, B., E. Wright, L. Campbell, and K. L. Blanchard. 1997. In vivo analysis of DNA-protein interactions on the human erythropoietin enhancer. Mol. Cell. Biol. 17: 851-856 https://doi.org/10.1128/MCB.17.2.851
  12. Kambe, T., J. Tada-Kambe, Y. Kuge, Y. Yamaguchi-Iwai, M. Nagao, and R. Sasaki. 2000. Retinoic acid stimulates erythropoietin gene transcription in embryonal carcinoma cells through the direct repeat of a steroid/thyroid hormone receptor response element half-site in the hypoxia-response enhancer. Blood 96: 3265-3271
  13. Kim, E. J., D. J. Kim, H. Y. Hwang, J. S. Yoon, Y. Yoon, and K. H. Baek. 2004. High-level expression of recombinant human interleukin-2 in Chinese hamster ovary cells using the expression system containing transcription terminator. J. Microbiol. Biotechnol. 14: 810-815
  14. Kim, N. Y., Y. J. Lee, H. J. Kim, J. H. Choi, J. K. Kim, K. H. Chang, J. H. Kim and H. J. Kim. 2004. Enhancement of erythropoietin production from Chinese hamster ovary (CHO) cells by introduction of the urea cycle enzymes, carbamoyl phosphate synthetase I and ornithine transcarbamylase. J. Microbiol. Biotechnol. 14: 844-851
  15. Lee, G. M., S. J. Kim, and B. O. Palsson. 1994. Enhanced specific antibody productivity of calcium alginate-entrapped hybridoma is cell line-specific. Cytotechnology 16: 1-15 https://doi.org/10.1007/BF00761774
  16. Mastrangelo, A. J., J. M. Hardwick, S. Zou, and M. J. Betenbaugh. 2000. Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol. Bioeng. 67: 555-564 https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<555::AID-BIT6>3.0.CO;2-T
  17. Masuda, S., S. K. Moon, T. Kambe, M. Nagao, and R. Sasaki. 2000. A new biological strategy for high productivity of recombinant proteins in animal cells by the use of hypoxiaresponse enhancer. Biotechnol. Bioeng. 67: 157-164 https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2<157::AID-BIT5>3.0.CO;2-B
  18. Moon, H. S., D. J. Lim, G. Y. Song, H. A. Kang, S. W. Kim, I. H. Kim, and S. I. Hong. 2002. A new spin filter for high density culture and ethanol production by Saccharomyces cervisiae. J. Microbiol. Biotechnol. 12: 406-410
  19. Moon, S. K., S. Takeuchi, T. Kambe, T. Tsuchiya, S. Masuda, M. Nagao, and R. Sasaki. 1997. Erythropoietin enhancer stimulates production of a recombinant protein by Chinese hamster ovary (CHO) cells under hypoxic condition. Cytotechnology 25: 79-88 https://doi.org/10.1023/A:1007963800362
  20. Pendse, G. J., S. Karkare, and J. E. Bailey. 1992. Effect of cloned gene dosage on cell growth and hepatitis B surface antigen synthesis and secretion in recombinant CHO cells. Biotechnol. Bioeng. 40: 119-129 https://doi.org/10.1002/bit.260400117
  21. Ratcliffe, P. J., B. L. Ebert, J. D. Forth, J. M. Gleadle, P. H. Maxwell, M. Nagao, J. F. O'Rourke, C. W. Pugh, and S. M. Wood. 1997. Oxygen regulated gene expression: Erythropoietin as a model system. Kidney Int. 51: 514-526 https://doi.org/10.1038/ki.1997.72
  22. Riley, M. R., F. J. Muzzio, and S. C. Reyes. 1997. Effect of oxygen limitations on monoclonal antibody production by immobilized hybridoma cells. Biotechnol. Prog. 13: 301-310 https://doi.org/10.1021/bp970028n
  23. Santore, M. T., D. McClintock, V. Y. Lee, G. R. S. Budinger, and N. S. Chandel. 2002. Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. Am. J. Physiol. 282: L727-L734
  24. Semenza, G. L., B. H. Jiang, S. W. Leung, R. Passantino, J. P. Concordet, P. Maire, and A. Giallongo. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271: 32529-32537 https://doi.org/10.1074/jbc.271.51.32529
  25. Semenza, G. L., P. H. Roth, H. M. Fang, and G. L. Wang. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269: 23757-23763
  26. Semenza, G. L. and G. L. Wang. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12: 5447-5454 https://doi.org/10.1128/MCB.12.12.5447
  27. Shirai, Y., M. Inagaki, M. Yamaguchi, T. Kambe, M. Nagao, S. Masuda, and R. Sadaki. 1997. Effect of hypoxia duration on the oxygen-dependent production of a recombinant protein, ${\beta}$-galactosidase, by an animal cell line, F6D2, with a hypoxia-inducible enhancer. Cytotechnology 25: 71-77 https://doi.org/10.1023/A:1007911816292
  28. Shishido, M. and M. Toda. 1996. Simulation of oxygen concentration profile in calcium alginate beads entrapping microbes during biological phenol degradation. Chem. Eng. Sci. 6: 859-872
  29. Silva, T. R. and F. X. Malcata. 1993. On the theoretical determination of optimal times for biomass production in batch cultures of aggregate-forming cells. Biotechnol. Prog. 9: 21-24 https://doi.org/10.1021/bp00019a003
  30. Simpson, N. H., A. E. Milner, and M. Al-Rubeai. 1997. Prevention of hybrimoma cell death by bcl-2 during suboptimal culture conditions. Biotechnol. Bioeng. 54: 1-16 https://doi.org/10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K
  31. Tazuke, S. I., N. M. Mazure, J. Sugawara, G. Carland, G. H. Faessen, L. F. Suen, J. C. Irwon, D. R. Powell, A. J. Giaccia, and L. C. Giudice. 1998. Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: A possible model for IGFBP-1 expression in fetal hypoxia. Proc. Natl. Acad. Sci. USA 95: 10188-10193
  32. Wang, G. L. and G. L. Semenza. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268: 21513-21518
  33. Wohlpart, D., J. Gainer, and D. Kirwan. 1991. Oxygen uptake by entrapped hybridoma cells. Biotechnol. Bioeng. 37: 1050-1053 https://doi.org/10.1002/bit.260371110
  34. Wood, S. M., M. S. Wiesener, K. M. Yeates, N. Okada, C. W. Pugh, P. H. Maxwell, and P. J. Ratcliffe. 1998. Selection and analysis of a mutant cell line defective in the hypoxiainducible factor-$1{\alpha}$-subunit (HIF-$1{\alpha}$): Characterization of HIF-$1{\alpha}$-dependent and-independent hypoxia-inducible gene. J. Biol. Chem. 273: 8360-8368 https://doi.org/10.1074/jbc.273.14.8360
  35. Yang, J. D., Y. Angelillo, M. Chaudhry, C. Goldenberg, and D. M. Goldenberg. 2000. Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol. Bioeng. 69: 74-82 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<74::AID-BIT9>3.0.CO;2-K
  36. Yu, W. K., J. Y. Kim, K. Y. Lee, and T. R. Heo. 2002. High density cultivation of Bifidobacterium longum using a calcium carbonate-alginate beads system. J. Microbiol. Biotechnol. 12: 444-448