DOI QR코드

DOI QR Code

A NOTE ON SOME CLOSURE TYPE PROPERTIES IN FUNCTION SPACES

  • Published : 2006.05.01

Abstract

We show that a group of three closure properties including the selectively Pytkeev property coincide on $C_k$(X) for a locally compact X. We also introduce a new game characterization of these properties for such spaces.

Keywords

References

  1. R. Engelking, General Topology, PWN, Warszawa, 1977
  2. Lj. D. R. Kocinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), no. 2, 255-261 https://doi.org/10.4995/agt.2003.2030
  3. Lj. D. R. Kocinac, The Reznichenko property and the Pytkeev property in hyperspaces, Acta Math. Hungar. 107 (2005), no. 3, 225-233 https://doi.org/10.1007/s10474-005-0192-0
  4. Lj. D. R. Kocinac and M. Scheepers, Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), no. 1, 135-143 https://doi.org/10.1016/S0166-8641(01)00177-8
  5. Lj. D. R. Kocinac and M. Scheepers, Combinatorics of open covers (VII) : Groupability, Fund. Math. 179 (2003), no. 2, 131-155 https://doi.org/10.4064/fm179-2-2
  6. V. I. Malykhin and G. Tironi, Weakly Frechet-Urysohn and Pytkeev spaces, Topology Appl. 104 (2000), no. 1-3, 181-190 https://doi.org/10.1016/S0166-8641(99)00027-9
  7. V. Pavlovic, Selectively stricty A-function spaces, East-West J. Math., (to appear)
  8. V. Pavlovic, A selective version of the property of Reznichenko in function spaces, (submitted)
  9. M. Sakai, The Pytkeev property and the Reznichenko property in function spaces, Note Mat. 22 (2003), no. 2, 43-52

Cited by

  1. A selective bitopological version of the Reznichenko property in function spaces vol.156, pp.9, 2009, https://doi.org/10.1016/j.topol.2009.01.010