DOI QR코드

DOI QR Code

GLOBAL COUPLING EFFECTS ON A FREE BOUNDARY PROBLEM FOR THREE-COMPONENT REACTION-DIFFUSION SYSTEM

  • Published : 2006.05.01

Abstract

In this paper, we consider three-component reaction-diffusion system. With an integral condition and a global coupling, this system gives us an interesting free boundary problem. We shall examine the occurrence of a Hopf bifurcation and the stability of solutions as the global coupling constant varies. The main result is that a Hopf bifurcation occurs for global coupling and this motion is transferred to the stable motion for strong global coupling.

Keywords

References

  1. D. Battogtokh, M. Hildebrand, K. Krischer, and A.S. Mikhailov, Nucleation kinetics and global coupling in reaction-diffusion systems, Phys. Rep. 288 (1997), 435-456 https://doi.org/10.1016/S0370-1573(97)00036-7
  2. M. Bode and H. -G. Purwins, Pattern formation in reaction-diffusion systems- dissipative solitons in physical systems, Phys. D 86 (1995), no. 1-2, 53-63 https://doi.org/10.1016/0167-2789(95)00087-K
  3. X. -F. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Trans. Amer. Math. Soc. 334 (1992), no. 2, 877-913 https://doi.org/10.2307/2154487
  4. P. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics Vol 53, SIAM, 1988
  5. P. Fife and J. Tyson, Target patterns in a realistic model of the Belousov- Zhabotinskii reaction, J. Chem. Phys. 73 (1980), no. 5, 2224-2237 https://doi.org/10.1063/1.440418
  6. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466 https://doi.org/10.1016/S0006-3495(61)86902-6
  7. Y. M. Ham, Internal layer oscillations in FitzHugh-Nagumo equation, J. Comput. Appl. Math. 103 (1999), no. 2, 287-295 https://doi.org/10.1016/S0377-0427(98)00264-7
  8. Y. M. Ham, A Hopf bifurcation in a free boundary problem depending on the spatial average of an activator, International Journal of Bifurcation and Chaos 13 (2003), no. 10, 3135-3145 https://doi.org/10.1142/S0218127403008508
  9. Y. M. Lee, R. Schaaf, and R. Thompson, A Hopf bifurcation in a parabolic free boundary problem, J. Comput. Appl. Math. 52 (1994), no. 1-3, 305-324 https://doi.org/10.1016/0377-0427(94)90363-8
  10. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer, New York-Berlin, 1981
  11. S. Koga, Y. Kuramoto, Localized Patterns in Reaction-Diffusion Systems, Prog. Theor. Phys. 63 (1980), no. 1, 106-121 https://doi.org/10.1143/PTP.63.106
  12. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
  13. M. Meinhardt, Models of Biological Pattern Formation, Academic Press, London, 1982
  14. M. Meixner, P. Rodin, and E. Scholl, Global control of front propagation in gate- driven multilayered structures, Phys. Status Solidi (B) 204 (1997), no. 1, 493-496 https://doi.org/10.1002/1521-3951(199711)204:1<493::AID-PSSB493>3.0.CO;2-F
  15. J. D. Murray, Mathematical Biology, Springer, Berlin, 1985
  16. J. Nagumo, S. Arimoto, and S. Yoshisawa, An active pulse transmission line simulating nerve axon, Proc. IRE. 50 (1962), 2061-2070
  17. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal. 18 (1987), no. 6, 1726-1770 https://doi.org/10.1137/0518124
  18. Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math. 49 (1989), no. 2, 481-514 https://doi.org/10.1137/0149029
  19. T. Ohta, M. Mimura, and R. Kobayashi, Higher-dimensional localized patterns in excitable media, Phys. D 34 (1989), no. 1-2, 115-144 https://doi.org/10.1016/0167-2789(89)90230-3
  20. C. Radehaus, R. Dohmen, H. Willebrand, and F. J. Niedernostheide, Model for current patterns in physical systems with two charge carriers, Phys. Rev. A. 42 (1990), 7426-7446 https://doi.org/10.1103/PhysRevA.42.7426
  21. K. Sakamoto, Spatial homogenization and internal layers in a reaction-diffusion system, Hiroshima Math. J. 30 (2000), no. 3, 377-402
  22. I. Schebesch and H. Engel, Self-Organization in Activator-Inhibitor Systems: Semiconductors, Gas Discharges and Chemical Active Media, Wissenschaft and Technik-Verlag, Berlin, 1996
  23. M. Suzuki, T. Ohta, M. Mimura, and H. Sakaguchi, Breathing and wiggling motions in three-species laterally inhibitory systems, Phys. Rev. E(3) 52 (1995), no. 4, part A, 3654-3655 https://doi.org/10.1103/PhysRevB.52.3654
  24. H. Willebrand, M. Or-Guil, M. Schilke, H. -G. Purwins, and Yu. A. Astrov, Experimental and numerical observation of quasiparticle like structures in a distributed dissipative system, Phys. Lett. A 177 (1993), no. 3, 220-224 https://doi.org/10.1016/0375-9601(93)90029-Y
  25. R. Woesler, P. Schutz, M. Bode, M. Or-Guil, and H. -G. Purwins, Oscillations of fronts and front pairs in two- and three-component reaction-diffusion systems, Phys. D 91 (1996), no. 4, 376-405 https://doi.org/10.1016/0167-2789(95)00270-7