DOI QR코드

DOI QR Code

THE MONOTONY PROPERTIES OF GENERALIZED PROJECTION BODIES, INTERSECTION BODIES AND CENTROID BODIES

  • Yu, Wu-Yang (Department of Mathematics Shanghai University) ;
  • Wu, Dong-Hua (Department of Mathematics Shanghai University)
  • Published : 2006.05.01

Abstract

In this paper, we established the monotony properties of generalized projection bodies $II_{\imath}K$, intersection bodies $I_{\imath}K$ and centroid bodies ${\Gamma}_{\imath}K$.

Keywords

References

  1. G. D. Chakerian and E. Lutwak, Bodies with similar projections, Trans. Amer. Math. Soc. 349 (1997), no. 5, 1811-1820 https://doi.org/10.1090/S0002-9947-97-01760-1
  2. R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435-445 https://doi.org/10.2307/2154703
  3. R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. 140 (1994), no. 2, 435-447 https://doi.org/10.2307/2118606
  4. R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications 58, Cambridge University Press, Cambridge, 1995
  5. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952
  6. S. Helgason, The Radon transform, Second edition, Progress in Mathematics, Vol. 5, Birkhauser, Boston, 1999
  7. K. Leichtweib, Konvexe mengen, Springer-Verlag, Berlin-New York, 1980
  8. E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531-538 https://doi.org/10.2140/pjm.1975.58.531
  9. E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91-105 https://doi.org/10.2307/2000399
  10. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), no. 2, 232-261 https://doi.org/10.1016/0001-8708(88)90077-1
  11. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60 (1990), no. 3, 365-391
  12. E. Lutwak, On quermassintegrals of mixed projection bodies, Geometriae Dedicata, 33 (1990), no. 1, 51-58
  13. E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150 https://doi.org/10.4310/jdg/1214454097
  14. E. Lutwak and G. Zhang, Blaschke-Santalo inequalities, J. Differential Geom. 47 (1997), no. 1, 1-16 https://doi.org/10.4310/jdg/1214460036
  15. C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535-1547 https://doi.org/10.2140/pjm.1961.11.1535
  16. C. M. Petty, Projection bodies, in:'Proceedings of a Colloquium on Convexity', Co- qenhagen, 1965, 234-241, Kobenhavns Univ. Mat. Inst. 1967
  17. W. Rudin, Principles of mathematical analysis, McGraw-Hill Companies, Inc. 1976
  18. R. Schneider, Zur einem Problem von Shephard uber die Projektionen konvexer Korper, Math. Z. 101 (1967), 71-82 https://doi.org/10.1007/BF01135693
  19. R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993
  20. G. C. Shephard, Shadow systems of convex bodies, Israel J. Math. 2 (1964), 229-236 https://doi.org/10.1007/BF02759738
  21. G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777-801 https://doi.org/10.2307/2154998
  22. G. Zhang, Sections of convex bodies, Amer. J. Math. 118 (1996), no. 2, 319-340 https://doi.org/10.1353/ajm.1996.0021
  23. G. Zhang, Dual kinematic formulas, Trans. Amer. Math. Soc. 351 (1999), no. 3, 985-995 https://doi.org/10.1090/S0002-9947-99-02053-X
  24. G. Zhang, A positive solution to the Busemann-Petty problem in $\mathbb{R}^4$, Ann. of Math. 149 (1999), no. 2, 535-543 https://doi.org/10.2307/120974

Cited by

  1. Intersection bodies and generalized cosine transforms vol.218, pp.3, 2008, https://doi.org/10.1016/j.aim.2008.01.011