폴리(비닐 알코올) 수용액의 준희박농도 영역에서 사슬 거동에 대한 수소결합의 효과

Hydrogen Bond Effect on Chain Behavior at the Semidilute Regime of Poly(vinyl alcohol) Aqueous Solution

  • 박일현 (금오공과대학교 고분자공학과) ;
  • 유영철 (금오공과대학교 고분자공학과) ;
  • 박기상 (금오공과대학교 고분자공학과) ;
  • 이동일 (금오공과대학교 고분자공학과) ;
  • 류원석 (영남대학교 섬유패션학부)
  • Park Il-Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yu Young-Chol (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park Ki-Sang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee Dong-Il (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lyoo Won-Seok (School of Textile, Yeungnam University)
  • 발행 : 2006.05.01

초록

어랙틱 폴리(비닐 알코올)(PVA) 수용액 시스템의 준희박농도에서의 고분자 사슬의 구조 및 거동을 살펴보기 위하여, 온도 $25^{\circ}C$에서 광산란 실험을 실시하였다. 산란 벡터 q에서 얻은 산란광의 세기 I(q)는 Onstein-Zernike 식으로 해석이 불가능하여 단순히 $I(q){\sim}q^{-m}$을 이용하여 fractal 차원 m을 얻었다. 그 결과 농도 3 wt% 이상에서는 $m=2.6{\pm}0.3$으로 일정하게 유지되었다. 동적 광산란으로 얻은 시간상관함수에는 항상 빠른 거동과 느린 거동의 두 종류가 공존하였으며, 빠른 거동의 협동확산계수는 reptation 이론의 농도의존지수 값(=3/4)과 달리 농도 의존성이 거의 나타나지 않았다. 또한 느린 거동은 거대한 크기의 불균일 영역대의 운동으로 해석되며, 이 거동의 농도지수는 -3.0으로써 매우 강한 농도 의존성을 보여 주었다. 이 불균일 영역대의 형성에는 어택틱 PVA의 -OH기 4개의 메소(meso)가 입체 규칙적으로 배향한 부분이 매우 중요한 역할을 하는 것으로 생각되어진다.

In order to investigate the structure and dynamics of atatic poly (vinyl alcohol) (PVA)/water system, laser light scattering experiment has been done in the semi-dilute concentration regime at $25^{\circ}C$. The scattering intensity I(q) can be analyzed with the fractal equation of $I(q){\sim}q^{-m}$ instead of Onstein-Zernike type equation. The fractal dimensionality m was found to be constant after reaching the plateau value of $m=2.6{\pm}0.3$ above C=3wt%. The time correlation function of dynamic light scattering has always two different modes such as fast mode and slow one. The cooperative diffusion of fast mode showed concentration independence contrary 4o the reptation theory's concentration dependent exponent of 3/4. The slow mode can be interpreted as the motion of large scale heterogeneities and its strong concentration dependence is apparent with a large negative exponent of -3.0. It is considered that the stereo-regular arrangement with four successive meso units of -OH plays as a key role in forming such heterogeneity.

키워드

참고문헌

  1. C. A. Finch Editor, Poly(vinyl alcohol) : Developments, John Wiley, New York, 1992
  2. J. P. Kim and D. H. Song, Polym. Sci. Technol. (Korea), 15, 31 (2004)
  3. W. Wu, M. Shibayama, S. Roy, H. Kurokawa, L. D. Coyne, S. Nomura, and R. Stein, Macromolecules, 23, 2245 (1990) https://doi.org/10.1021/ma00210a020
  4. T. Kanaya, M. Ohkura, K. Kaji, M. Furusaka, M. Misawa, H. Yamaoka, and G. D. Wignall, Physica B, 180/181, 549 (1992) https://doi.org/10.1016/0921-4526(92)90820-I
  5. K. Kanaya, M. Ohkura, K. Kaji, M. Furusaka, and M. Misawa, Macromolecules, 27, 5609 (1994) https://doi.org/10.1021/ma00098a014
  6. T. Kanaya, M. Ohkura, H. Takeshita, K. Kaji, M. Furusaka, H. Yamaoka, and G. D. Wignall, Macromolecules, 28, 3168 (1995) https://doi.org/10.1021/ma00113a019
  7. C. Hara and M. Marsuo, Polymer, 36, 603 (1995) https://doi.org/10.1016/0032-3861(95)91570-W
  8. T. Kanaya, H. Takeshita, Y. Nishikoji, M. Ohkura, K. Nishida, and K. Kaji, Supramol. Sci., 5, 215 (1998) https://doi.org/10.1016/S0968-5677(98)00009-1
  9. J. H. Choi, S.-W. Ko, B. C. Kim, J. Blackwell, and W. S. Lyoo, Macromolecules, 34, 2964 (2001) https://doi.org/10.1021/ma001710s
  10. W. S. Lyoo, J. H. Kim, J. H. Choi, B. C. Kim, and J. Blackwell, Macromolecules, 34, 3982 (2001) https://doi.org/10.1021/ma001338g
  11. W. S. Lyoo, S. Chvalun, H. D. Ghim, J. P. Kim, and J. Blackwell, Macromolecules, 34, 2615 (2001) https://doi.org/10.1021/ma001624s
  12. C. Y. Chen and T.-L. Yu, Polymer, 38, 2019 (1997) https://doi.org/10.1016/S0032-3861(96)00765-3
  13. F. Ikkai, M. Shibayama, S. Nomura, and C. C. Han, J. Polym. Sci Polym. Phys. Ed., 34, 939 (1996) https://doi.org/10.1002/(SICI)1099-0488(19960415)34:5<939::AID-POLB12>3.0.CO;2-C
  14. F. Ikkai and M. Shibayama, Phys. Rev. Lett., 82, 4946 (1999) https://doi.org/10.1103/PhysRevLett.82.4946
  15. L. Fang and W. Brown, Macromolecules, 23, 3284 (1990) https://doi.org/10.1021/ma00215a014
  16. A.-L. Kjoniksen and B. Nystrom, Macromolecules, 29, 7116 (1996) https://doi.org/10.1021/ma960705e
  17. P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979
  18. K. L. Ngai, Adv. Colloid Interface Sci., 64, 1 (1996) https://doi.org/10.1016/0001-8686(95)00273-1
  19. S. W. Provencher, Macromol. Chem., 180, 201 (1979) https://doi.org/10.1002/macp.1979.021800119
  20. E. F. Grabowski, and I. D. Morrison, 'Particle Size Distributions from Analyses of Quasi-Elastic Light Scattering Data', in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, Editor, John Wiley, NY, p 200 (1983)
  21. W. Brown, and T. Nicolai, 'Dynamic Properties of Polymer Solutions', in Dynamic Light Scattering: The Method and Some Applications, W. Brown, Editor, Clarendon Press, Oxford, p 272 (1993)
  22. I. Teraoka, Polymer Solutions: An Introduction to Physical Properties, Wiley, NY, Chap. 4, 2002
  23. L. Leger, H. Hervet, and F. Rondelez, Macromolecules, 14,1732 (1981) https://doi.org/10.1021/ma50007a023
  24. L. M. Wheeler and T. P. Lodge, Macromolecules, 22, 3399 (1989) https://doi.org/10.1021/ma00198a035
  25. N. A. Rotstein and T. P. Lodge, Macromolecules, 25, 1316 (1992) https://doi.org/10.1021/ma00030a018
  26. K. A. Streletzky and G. D. J. Phillies, J. Polym. Sci.; Part B: Polym. Phys., 36, 3087 (1998) https://doi.org/10.1002/(SICI)1099-0488(199812)36:17<3087::AID-POLB9>3.0.CO;2-2
  27. R. O'connell, H. Hanson, and G. D. J. Phillies, J. Polym. Sci.; Part B: Polym. Phys., 43, 323 (2005) https://doi.org/10.1002/polb.20329
  28. J. Kanatharana, J. Sukpisan, A. Sirivat and, S. Q. Wang, Polym. Eng. Sci., 36, 2986 (1996) https://doi.org/10.1002/pen.10701
  29. G. Williams and D. C. Watts, Trans. Faraday Soc., 66, 80 (1970) https://doi.org/10.1039/tf9706600080
  30. J. C. J. F. Tacx, H. M. Schoffeleers, A. G. M. Brands, and L. Teuwen, Polymer, 41, 947 (2000) https://doi.org/10.1016/S0032-3861(99)00220-7
  31. C. Wu and T. Ngai, Polymer, 45, 1739 (2004) https://doi.org/10.1016/j.polymer.2003.11.045
  32. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London, 1992
  33. M. Hofer, 'Basic Concepts in Static and dynamic light scattering: Application to colloids and polymers', in Neutron X-ray and Light Scattering: Introduction to an Investigation Tool for Colloidal and Polymeric Systems, P. Lindner, and T. Zemb, Editors, North-Holland, NY, 1991
  34. M. Heckmeier, M. Mix, and G. Strobl, Macromolecules, 30, 4454 (1997) https://doi.org/10.1021/ma961781k
  35. P. Wiltzius, H. R. Haller, D. S. Cannell, and D. W. Schaefer, Phys. Rev. Lett., 51, 1183 (1983) https://doi.org/10.1103/PhysRevLett.51.1183
  36. P. Stepanek and W. Brown, Macromolecules, 31, 1889 (1998) https://doi.org/10.1021/ma970458u
  37. K. Shibatani, Polym. J., 1, 348 (1970) https://doi.org/10.1295/polymj.1.348
  38. L. M. Wilson and A. C. Griffin, Macromolecules, 27, 1928 (1994) https://doi.org/10.1021/ma00085a041
  39. L. M. Wilson, Macromolecules, 28, 325 (1995) https://doi.org/10.1021/ma00105a045
  40. I. H. Park, Polymer(Korea), 26, 227 (2002)
  41. I. H. Park, J. E. Yoon, Y. C. Kim, L. Yun, and S. C. Lee, Macromolecules, 37, 6170 (2004) https://doi.org/10.1021/ma030534v
  42. D. W. Ovenall, Macromolecules, 17, 1458 (1984) https://doi.org/10.1021/ma00138a008