트리아세틴/ESO를 이용한 가소화 셀룰로오스 디아세테이트의 제조 및 물성

Preparation and Properties of Plasticized Cellulose Diacetate Using Triacetine/Epoxidized Soybean Oil

  • 이상환 (성균관대학교 화학공학과) ;
  • 이상율 (성균관대학교 화학공학과) ;
  • 임환규 (목원대학교 디자인소재공학과) ;
  • 남재도 (성균관대학교 고분자공학과) ;
  • 계형산 (목원대학교 디자인소재공학과) ;
  • 이영관 (성균관대학교 화학공학과)
  • Lee, Sang-Hwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Sang-Yool (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lim, Hwan-Kyu (Department of Design & Materials, Mokwon University) ;
  • Nam, Jae-Do (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Kye, Hyoung-San (Department of Design & Materials, Mokwon University) ;
  • Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University)
  • 발행 : 2006.05.01

초록

트리아세틴(TA)을 가소제로 이용하여 용융 가공법으로 가소화된 셀룰로오스 디아세테이트(CDA)를 제조하였다. 또한 2차 가소제로 에폭시화된 콩기름(ESO)을 사용하여 CDA의 가공성을 향상시켰다. DMA분석으로 CDA에 20%의 가소제를 사용한 경우 $T_g$가 약 $50^{\circ}C$ 낮게 나타났고 여기에 ESO를 5% 더 첨가했을 때는 약 $20^{\circ}C\;T_g$가 감소하였다. 또한 TA로 가소화된 CDA필름이 폴리프로필렌(PP) 또는 폴리락트산(PLA)보다 우수한 인장강도 및 탄성률을 나타내었다. 호기성 퇴비화 조건에서 CDA는 60일 동안 셀룰로오스 대비 약 90%의 생분해도를 나타내었다.

The plasticized cellulose diacetate (CDA) was prepared by melt processing methods using triacetine (TA) as a plasticizer. Additionally, processability of CDA was enhanced by using epoxidized soybean oil as a secondary plasticizer. The glass transition temperature of plasticized CDA was observed at $50^{\circ}C$ lower than virgin CDA and the incorporation of 5% ESO also resulted in the additional $20^{\circ}C$ decrease in the $T_g$. The tensile properties and modulus of plasticized CDA were better than commercial PP and PLA. The aerobic biodegradability of CDA in controlled compositing condition resulted in 90% of degradation during 60 days.

키워드

참고문헌

  1. C. R. Young, J. J. Koleng, and J. W. McGinity, Inter. J. Pharma., 242, 87 (2002) https://doi.org/10.1016/S0378-5173(02)00152-7
  2. J. Liu, F. Zhang, and J. W. McGinity, Euro. J. Pharma. Biopharma., 52, 181 (2001) https://doi.org/10.1016/S0939-6411(01)00162-X
  3. O. L. Sprocket, M. Sen, P. Shivanand, and W. Prapaitrakul, Inter. J. Pharma., 155, 191 (1997) https://doi.org/10.1016/S0378-5173(97)00165-8
  4. R. D. Gilbert, R. A. Venditti, C. Zhang, and K. W. Koelling, J. Appl. Polym, Sci., 77, 418 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<418::AID-APP19>3.0.CO;2-I
  5. W. Qiu, F. Zhang, T. Endo, and T. Hirotsu, J. Appl. Polym. Sci. 87, 337 (2003) https://doi.org/10.1002/app.11446
  6. W. Mormann and D. Spitzer, Macromol. Symp., 176, 279 (2001)
  7. T. Schauber, S. D. Vos, W. Huhn, B. Rieger, and M. Moller, Macromol. Chem. Phys., 200, 574 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<574::AID-MACP574>3.0.CO;2-T
  8. F. Zhang, W. Qiu, L. Yang, T. Endo, and T. Hirotsu, J. Mater. Chem., 12, 24 (2002) https://doi.org/10.1039/b108255h
  9. L. Y. Mwaikambo and M. P. Ansell, Angew. Makromol. Chem., 272, 108 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  10. X. Lu, M. Q. Zhang, M. Z. Rong, G. Shi, G. C. Yang, and H. M. Zeng, Adv. Compos. Lett., 8, 231 (1999)
  11. D. N. S. Hon and M. S. L. Josefina, J. Polym. Sci., Part A: Polym. Chem., 27, 4143 (1989) https://doi.org/10.1002/pola.1989.080271221
  12. D. N. S. Hon and N. J. Ou, J. Polym. Sci., Part A: Polym. Chem., 27, 2457 (1989) https://doi.org/10.1002/pola.1989.080270725
  13. Y. Kiso, T. Kitao, and K. Nishimura, J. Appl. Polym. Sci., 71, 1657 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1657::AID-APP13>3.0.CO;2-W
  14. J. Pauly, H. Allaart, M. Rodriguez, and R. Streck, Cancer Res., 55, 253 (1995)
  15. M. A. Frohoff-Hulsmann, N. C. Lippold, and K. W. McGinity, Euro. J. Pharma. Biopharma., 48, 67 (1999) https://doi.org/10.1016/S0939-6411(99)00023-5
  16. S. R. Bechard, L. Levy, and S. D. Clas, Inter. J. Pharma., 114, 205 (1995) https://doi.org/10.1016/0378-5173(94)00239-2
  17. R. Hyppola, I. Husson, and F. Sundholm, Inter. J. Pharma., 133, 161 (1996) https://doi.org/10.1016/0378-5173(96)04436-5
  18. A. K. Mohanty, A. Wibowa, M. Misra, and L. T. Drzal, Polym. Eng. Sci., 43, 1151 (2003) https://doi.org/10.1002/pen.10097
  19. Analysis of evolved carbon dioxide by titration method, ISO 14855 (1999)
  20. H. Y. won and I. W. Kim, Polym. Sci. Tech., 6, 101 (1995)
  21. P. W. Law, A. Longdon, and G. G. Willins, Marcromol. Symp., 208, 293 (2004)
  22. C. Albano, J. Gonzalez, M. Ichazo, and D. Kaiser, Polym. Degrad. Stab., 66, 179 (1999) https://doi.org/10.1016/S0141-3910(99)00064-6
  23. N. E. Marcovich, M. M. Reboredo, and M. I. Aranguren, Thermochimica Acta., 372, 45 (2001) https://doi.org/10.1016/S0040-6031(01)00425-7