The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge

배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향

  • Published : 2006.02.01

Abstract

This paper examined the conversion of methane to hydrogen and other higher hydrocarbons using dielectric barrier discharge with AC pulse power. Two metal electrodes of a coaxial-type plasma reactor were separated by gas gap and an alumina tube. The inner electrode was located inside the alumina tube. The alumina tube was located inside the stainless steel tube, which was used as the outer electrode. Effect of feed gas composition (methane, oxygen, argon, water and helium), flow rate, applied frequency, input volt-age on methane conversion and product distribution were studied. The major products of plasma chemical reactions were ethylene, ethane, propane, buthane, hydrogen, carbon monoxide and carbon dioxide. The increment of applied voltage and the usage of inert gas as the background (helium and argon) enhanced the selectivity of hydrocarbons and methane conversion. The addition of water in the feed stream enhanced the conversion of methane and yield of hydrogen. Higher voltage leads to higher yield of $C_2H_6,\;C_3H_8,\;C_4H_{10}$ and yield or $C_2H_2\;and\;C_2H_4$ appeared highly in lower voltage.

본 연구에서는 배리어 방전을 이용한 메탄전환 반응에서 수소 및 다른 탄화수소류 화합물의 생성율과 분포에 관하여 알아보았다. 반응기의 외부전극과 내부전극은 SUS로 만들어진 원통형을 사용하였으며, 배리어 방전을 일으키기 위해서 전극 사이에 알루미나 튜브를 사용하였다. 전환된 메탄으로부터 다양한 생성물을 얻기 위해서 유입가스의 조성, 유량변화, 주파수 및 전압을 변화시켜 주면서 실험하였다. 플라즈마 반응에 의한 주요한 생성물들은 에틸렌, 에탄, 프로판, 부탄, 수소, 일산화탄소, 그리고 이산화탄소 등으로 나타났다. 비활성 가스의 사용과 인가전압의 증가에 의해서 메탄 전환율 및 탄화수소류의 선택도가 향상되었다. 유입가스 내에 수증기의 첨가로 인해서 메탄의 전환율 및 수소의 수율이 증가되었다. 수증기 첨가 반응에서 에탄, 프로판 그리고 부탄은 더 높은 전압을 인가하였을 때 수율이 증가하였으며, 아세틸렌과 에틸렌은 보다 낮은 전압에서 수율이 증가함을 알 수 있었다.

Keywords

References

  1. Zhang, K.; Kogelschatz, U.; Eliasson, B. 'Conversion of greenhouse gases to synthesis gas and higher hydrocarbons', Energy & Fuels, 2001, 15, 395 https://doi.org/10.1021/ef000161o
  2. Li, Y.; Xn, G.H.; Liu, C.J.; Eliasson, B.; Xue, B.Z. 'Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge: effect of electrode materials', Energy & Fuels, 2001, 15, 299 https://doi.org/10.1021/ef0002445
  3. Yao, S.L.; Ouyang, F.; Nakayama, A.; Suzuki, E.; Okumoto, M.; Mizuno, A. 'Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma', Energy & Fuels, 2000, 14, 910 https://doi.org/10.1021/ef000016a
  4. Jiang, T.; Li, Y.; Liu, C.-J.; Xu, G.-H.; Eliasson, B.; Xue, B. 'Plasma methane conversion using dielectricbarrier discharges with zeolite A', Catalysis Today, 2002, 72, 229 https://doi.org/10.1016/S0920-5861(01)00497-7
  5. Savinov, S.Y.; Lee, H.; Song, H.K.; Na, B.K. 'The Effect of vibrational excitation of molecules on plasma chemical reactions involving methane and nitrogen', Plasma Chem & Plasma Proc., 2003, 23, 159
  6. Okumoto, M.; Kim, H.-H.; Takashima, K.; Katsura, S.; Mizuno, A. 'Conversion of methane to higher hydrocarbons using non-thermal plasma', Industry Applications Society, IEEE-IAS Annual Meeting, 2000, 1, 636
  7. Yao, S.; Nakayama, A.; Suzuki, E. 'Methane conversion using a high-frequency pulsed plasma: important factors', AICHE Journal, 2001, 47, 2 https://doi.org/10.1002/aic.690470102
  8. Masi, M.; Cavallotti, C.; Carra, S. 'Different approaches for methane plasmas modeling', Chemical Engineering Science, 1998, 53, 3875 https://doi.org/10.1016/S0009-2509(98)00197-3
  9. Liu, C.-J.; Xue, B.; Eliasson, B.; He, F.; Li, Y.; Xu, G.-H. 'Methane conversion to higher hydrocarbons in the presence of carbon of carbon dioxide using dielectric-barrier discharge plasmas', Plasma Chemistry and Plasma Processing, 2001, 21(3), 301
  10. Savinov, S.Y.; Lee, H.; Song, H.K.; Na, B.K. 'The decomposition of CO2 in glow discharge', Korean J. Chem. Eng., 2002, 19, 564 https://doi.org/10.1007/BF02699296
  11. Savinov, S.Y.; Lee, H.; Song, H.K.; Na, B.K. 'A study on decomposition of methane and carbon dioxide in a radio-frequency discharge', Industrial & Engineering Chemistry Research, 1999, 38, 2540 https://doi.org/10.1021/ie980492c
  12. Gaudernack, B.; Lynum, S. 'Hydrogen from natural gas without release of $CO_2$ to the atmosphere', Int. J. Hydrogen Energy, 1998, 23 1087 https://doi.org/10.1016/S0360-3199(98)00004-4
  13. Yang, Y. 'Methane conversion and reforming by nonthermal plasma on pins', Ind. Eng. Chem. Res., 2002, 41, 5918 https://doi.org/10.1021/ie0202322
  14. Larkin, D.W.; Lobban, L.L.; Mallinson, R.G. 'Production of organic oxygenates in the partial oxidation of methane in a silent electric discharge reactor', Ind. Eng. Chem. Res., 2001, 40, 1594 https://doi.org/10.1021/ie000527k
  15. Okazaki, K.; Kishida, T.; Ogawa, K.; Nozaki, T. 'Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration', Energy Conversion and Management, 2002, 43, 1459 https://doi.org/10.1016/S0196-8904(02)00028-6
  16. Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L. 'Oxidative coupling of methane with ac and dc corona discharges', Ind. Eng. Chem. Res., 1996, 35 3295 https://doi.org/10.1021/ie960138j
  17. Akishev, Yu. S.; Dem'yanov, A.V.; Karal'nik, V.B.; Pan'kin, M.B.; Trushkin, N.I. 'Pulsed regime of the diffusive mode of a barrier discharge in helium', Plasma Physics Reports, 2001, 27, 164 https://doi.org/10.1134/1.1348495
  18. Jeong, H.K.; Kim, S.C.; Han, C.; Lee, H.; Song, H.K.; Na, B.K. 'Conversion of methane to higher hydrocarbons in pulsed dc barrier discharge at atmospheric pressure', Korean Journal of Chemical Engineering, 2001, 18, 196 https://doi.org/10.1007/BF02698459
  19. Supat, K.; Chavadej, S.; Lobban, L.L.; Mallinson, R.G. 'Combined carbon dioxide and steam reforming with methane in low-temperature plasmas', ACS Symposium Series, 2003, 852, 83
  20. Lee, H.; Savinov, S.Y.; Song, H.K.; Na, B.K. 'Estimation of the Methane conversion in a capacitively coupled radio-frequency plasma', Journal of Chemical Engineering of Japan, 2001, 34, 1356 https://doi.org/10.1252/jcej.34.1356