MIMO-OFDM 시스템에서 Modified ICA를 이용한 채널 추정 기법

Channel Estimation Scheme Using Modified ICA in MIMO-OFDM Systems

  • 김종득 (시립인천대학교 전자공학과 신호처리 연구실) ;
  • 변윤식 (시립인천대학교 전자공학과 신호처리 연구실)
  • 발행 : 2006.05.01

초록

MIMO-OFDM 방식에서 추정된 채널 계수에 추정 오차가 있다면, 시스템의 성능 저하가 발생하게 된다. MIMO-OFDM 방식의 성능을 향상시키기 위해서는 무엇보다도 다중 경로 페이딩 환경에서 정확하게 채널을 추정 할 수 있는 기술이 필요하다. 본 논문에서는 다중 경로 시변 페이딩 채널하에서의 modified ICA (Independent Component Analysis)을 이용하여 수신된 신호로부터 각 송신 안테나의 송신 신호를 분리한 후, 채널을 추정하여 검파하는 새로운 채널 추정 방식인 Modified ICA 알고리즘을 소개하고, 제안하고자 한다. 본 논문에서 제안된 Modified ICA를 이용한 MIMO-OFDM 시스템에서의 채널 추정에 대한 모의실험 결과, perfect hewn channel 대해 Uncoded QPSK,16-QAM, 64-QAM의 SER과 BER 성능 비교 곡선이 매우 근접함을 알 수 있다. 따라서 제안된 알고리즘이 MIMO-OFDM 시스템에서 우수한 성능을 지니고 있음을 보여 주고 있다.

If channel coefficients errors exist in MIMO-OFDM systems, the performance degradation of systems will occurs. In order to improve the performance of MIMO-OFDM systems, the technique of obtaining accurate channel estimation in multipath fading channel is necessary. In this paper, we introduce and propose new channel estimation-modified ICA algorithm. Simulation results shows from BER and SER curves which compare the proposed algorithm under time-varying Rayleigh fading with perfect known channel. The result of channel estimation by the proposed algorithm in this simulation, it shows that PDF(amplitude of channel) are close to the case with perfect known channel at the receiver with respect to uncoded QPSK/16-QAM/64-QAM modulation. Also, we can see that BER and SER curves are very close to the case with perfect known channel. Therefore, we see that the proposed algorithm have a good performance in MIMO-OFDM systems.

키워드

참고문헌

  1. R. V. Nee and R. Prasad, OFDM for wireless multimedia communications. Altech House, 2000
  2. A. Wittneben, 'A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation,' in Proc. IEEE Int. Communications Conf., pp. 1630-1634, June 1993
  3. V. Tarokh, N. Seshadri and A. R. Calderbank, 'Space-time codes for high data rate wireless communication: Performance analysis and code construction,' IEEE Trans. Inform. Theory. vol. 44. pp.744-765, Mar. 1998 https://doi.org/10.1109/18.661517
  4. J. H. Winsters, 'On the capacity of radio communication systems with diversity in a Rayleigh fading environment,' IEEE Jr. Select. Areas Comm., vol. SAC-5, pp.871-878, June 1987
  5. I. E. Telatar, 'Capacity of multi-antenna Gaussian Channels,' Eur. Trans. Telecom., vol. 10, pp. 585-595, Nov. 1999 https://doi.org/10.1002/ett.4460100604
  6. L. J. Cimini, Jr., 'Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,' IEEE Trans. Comm., vol. COM-33, no. 7, pp.665-765, July 1985
  7. V. Mignone and A. Morello, 'A novel demodulation scheme for fixed and movile receivers,' IEEE Trans. Comm., vol. 44, pp. 1144-1151, Sept. 1996 https://doi.org/10.1109/26.536920
  8. S. B. Weinstein and P. M. Ebert, 'Data transmission by frequency division multiplexing using the discrete Fourier transform,' IEEE Trans. Comm., Tech., vol. COM-19, pp. 628-638, Oct. 1971
  9. H. Rohling, T. May, K. Bruninghaus and R. Grunheid, 'Broadband OFDM radio transmission for multimedia applications,' in Proc. IEEE, vol. 87, pp. 1778-1789, Oct. 1999
  10. Y. Li, N. seshadri and S. Ariyavisitakul, 'Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels,' IEEE Jr. Select. Areas Comm., vol. 17, pp. 461-471, Mar. 1999 https://doi.org/10.1109/49.753731
  11. Y. Li, 'Simplified channel estimation for OFDM systems with multiple transmit antennas,' IEEE trans. Wireless Comm., vol. 1, pp. 76-75, Jan. 2002 https://doi.org/10.1109/7693.975447
  12. J. Baltersee, G. Fock and H. Meyr, 'Achievable rate of MIMO channels with data-aidd channel estimation and perfect interleaving,' IEEE Jr. Select. Areas Comm., vol. 19, no. 12, pp. 2358-2368, Dec. 2001 https://doi.org/10.1109/49.974602
  13. A. K. Nandi, Blind Estimation using Higher-Order Statistics. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999
  14. P. Comon, P. Chevalier and V. Capdeville, 'Performance of contrast-based blind source separation,' in Proc. SPAWC'97, vol. no. 1, pp. 345-348, April 1997
  15. P. Smaragdis, 'Blind separation of convoluted mixtures in frequency domain,' Neurocomputing, vol. 22(1-3), pp. 21-34, 1998 https://doi.org/10.1016/S0925-2312(98)00045-9
  16. A. Hyvainen and E. Oja, 'Independent component analysis: algorithms and applications,' Neural Networks, vol. 13(4-5), pp. 411-430, 2000 https://doi.org/10.1016/S0893-6080(00)00026-5
  17. J. F. Cardoso, 'Source separation using higher order moments,' in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing(ICASSP'89), pp. 2109-2112, May 1989
  18. C. S. Wong and D. Obradovic, 'Independent component analysis for blind equalization of frequency selective channels,' 2003 IEEE XIII Workshop on Neural Networks for Signal Processing, pp. 419-427, Sep. 2003