• Title/Summary/Keyword: Channel Estimation

Search Result 1,328, Processing Time 0.026 seconds

ODFM-Based Adaptive Channel Estimation Algorithms for IEEE 802.11ad WLAN

  • Nguyen-Thi, My-Kieu;Kim, Jinsang;Lee, Seungjoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.6 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • This paper proposes an adaptive channel estimation scheme for OFDM-based IEEE 802.11ad wireless local area network (WLAN). The standard supports two types of information of OFDM packets for estimating the communication channels, which are the channel estimation field (CEF) of preamble and pilot subcarriers. The CEF-based channel estimation provides better BER (bit error rate) performance at slow fading channel state, whereas the pilot-based channel estimation is good at fast fading channel state. Hence, a combined channel estimation method is introduced to improve the performance. The prediction of the channel state to select the proper channel estimation method is required. In this work, an adaptive channel estimation scheme is also proposed to improve the performance of channel estimation (CE). Basing on a channel quality indicator (CQI), the proper channel estimation method corresponding to the channel type is decided.

Power Control for D2D Communication in the Cellular System: The Impact of Channel Estimation Error

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we investigate the impact of channel estimation error on the D2D power control algorithm. In the previous work, D2D power control algorithm has been proposed under the assumption that the channel between the transmitter and the corresponding receiver is perfectly estimated. In reality, the channel estimation error is more often the case. The first question is that the power control algorithm designed for perfect channel estimation is still valid under the channel estimation error environment ? The second question is, if it is not valid, what could be the possible remedy for the channel estimation error ? In this paper, to answer the first question, we investigate the impact of the channel estimation error on the power control algorithm. We first review the D2D power control algorithm designed for perfect channel estimation. Then, we model the channel estimation error. Finally, we summarize the main results observed from the analysis of the simulation.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

An Efficient Channel Estimation for Amplify and Forward Cooperative Diversity with Relay Selection

  • Jeong, Hyun-Doo;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.94-98
    • /
    • 2009
  • In this paper, we propose a new channel estimation scheme for amplify and forward cooperative diversity with relay selection. In order to select best relay, it is necessary to know channel state information (CSI) at the destination. Most of the previous works, however, assume that perfect CSI is available at the destination. In addition, when the number of relay is increased it is difficult to estimate CSI through all relays within coherence time of a channel because of the large amount of frame overhead for channel estimation. In a proposed channel estimation scheme, each terminal has distinct pilot signal which is orthogonal each other. By using orthogonal property of pilot signals, CSI is estimated over two pilot signal transmission phases so that frame overhead is reduced significantly. Due to the orthogonal property among pilot signals, estimation error does not depend on the number of relays. Simulation result shows that the proposed channel estimation scheme provides accurate CSI at the destination.

  • PDF

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

A Low-Complexity 2-D MMSE Channel Estimation for OFDM Systems (OFDM 시스템을 위한 낮은 복잡도를 갖는 2-D MMSE 채널 추정 기법)

  • Kim, Jung-In;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.317-325
    • /
    • 2011
  • For OFDM (Orthogonal Frequency Division Multiplexing) systems, 2-D MMSE (2-Dimensional Minimum Mean Square Error) channel estimation provides optimal performance in frequency/time selective fading channel environment. However, the 2-D MMSE channel estimation has high computational complexity due to the large matrix size, because the 2-D MMSE channel estimation considers time as well as frequency axis for channel estimation. To reduce the computational complexity, we propose a modified 2-D MMSE channel estimator which is based on 1-D MMSE channel estimation with weighted sum. Furthermore, we consider RMS delay spread and Doppler frequency estimation for 2-D MMSE channel estimation. We show that the proposed method can significantly reduce computational complexity as well as that it can perform close to 2-D MMSE channel estimation.

Optimal Power Allocation for Channel Estimation of OFDM Uplinks in Time-Varying Channels

  • Yao, Rugui;Liu, Yinsheng;Li, Geng;Xu, Juan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This paper deals with optimal power allocation for channel estimation of orthogonal frequency-division multiplexing uplinks in time-varying channels. In the existing literature, the estimation of time-varying channel response in an uplink environment can be accomplished by estimating the corresponding channel parameters. Accordingly, the optimal power allocation studied in the literature has been in terms of minimizing the mean square error of the channel estimation. However, the final goal for channel estimation is to enable the application of coherent detection, which usually means high spectral efficiency. Therefore, it is more meaningful to optimize the power allocation in terms of capacity. In this paper, we investigate capacity with imperfect channel estimation. By exploiting the derived capacity expression, an optimal power allocation strategy is developed. With this developed power allocation strategy, improved performance can be observed, as demonstrated by the numerical results.

Doubly-Selective Channel Estimation for OFDM Systems Using a Pilot-Embedded Training Scheme

  • Wang, Li-Dong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.203-208
    • /
    • 2006
  • Channel estimation and data detection for OFDM systems over time- and frequency-selective channels are investigated. Relying on the complex exponential basis expansion channel model, a pilot-embedded channel estimation scheme with low computational complexity and spectral efficiency is proposed. A periodic pilot sequence is superimposed at a low power on information bearing sequence at the transmitter before modulation and transmission. The channel state information(CSI) can be estimated using the first-order statistics of the received data. In order to enhance the performance of channel estimation, we recover the transmitted data which can be exploited to estimate CSI iteratively. Simulation results show that the proposed method is suitable for doubly-selective channel estimation for the OFDM systems and the performance of the proposed method can be better than that of the Wiener filter method under some conditions. Through simulations, we also analyze the factors which can affect the system performances.

Channel Estimation for Mobile OFDM systems by LS Estimator based Kalman Filtering Algorithm

  • Bae, Sang-Jun;Jang, Yoon-Ho;Nam, Sang-Kyun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1208-1215
    • /
    • 2009
  • In OFDM systems, mobile channel degrades the system performance seriously. Therefore, channel estimation technique is required to compensate for the degradation from the channel effects. However, conventional channel estimations in frequency domain induce ICI which is induced from Doppler frequency. In addition, a linear interpolation method causes inaccurate channel estimation. In order to minimize the effect of the interference and interpolation error, the proposed method combines LS method and Kalman filtering algorithm. Channel impulse response is adaptively tracked by Kalman filtering based on the information from LS estimator. Simulation results are presented to verify the performance of the proposed channel estimation over mobile channel environment. Simulation results show that the proposed method can effectively compensate for channel degradation.