FATIGUE RESISTANCE OF DENTAL IMPLANTS TREATED WITH LASER METHOD

  • Park, Eun-Young (Department of Dentistry, College of Medicine, Youngnam University)
  • Published : 2006.12.31

Abstract

Statement of problem. Many surface processing methods of dental implant have been developed, the laser processing is one of them. Purpose. This study was to investigate in vitro the fatigue resistance of implants treated with laser method(CSM implant, CSM Company, Daegu, Korea). Material and methods. Fatigue tests of 23 laser treated CSM implant(CSM Company, Daegu, Korea) were conducted using Instron 8871 (Load cell, 5 kN, Instron Co., England), according to ISO 14801 (2003), Results. From 300 N, each specimens were not fractured and withstood until more than 5,000,000 cycle. Conclusion. Within the limits of this in vitro study, implants treated with laser method (CSM implant, CSM Company, Daegu, Korea) have had enough rigidity and fatigue resistance to use clinically with reliance.

Keywords

References

  1. Adell R, Ericsson B, Lekholm U, et al : A long term follow-up study of osseointegrated implants in the reatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347
  2. Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI Dental Implants System : a consensus report. Clin Oral Implants Res 2000;11(suppl):33-58 https://doi.org/10.1034/j.1600-0501.2000.011S1033.x
  3. Jemt T, Lekholm U, Grondahl K. 3-year follow up study of early single implant restorations ad modum Branemark.Int J Periodontics Restorative Dent 1990;10:340-9
  4. Scheller H, Urgell JP, Kultje C, Klineberg I, Goldberg PV, Stevenson Moore P, et al. A 5-year multicenter study on implant-supported single crown restorations. Int. J Oral Maxillofac Implants 1998;13:212-8
  5. Jemt T, Pettersson P. A 3-year follow up study of single implant treatment. J Dent 1993;21:203-8 https://doi.org/10.1016/0300-5712(93)90127-C
  6. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399- 410 https://doi.org/10.1016/S0022-3913(83)80101-2
  7. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 1998;43:192-203 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K
  8. Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation. J Biomech 2001;34:113-20 https://doi.org/10.1016/S0021-9290(00)00112-3
  9. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401
  10. Chang YS, Gu HO, Kobayashi M, Oka M. Influence of various structure treatments on histological fixation of titanium implants. J Arthroplasty 1998;13:816-25 https://doi.org/10.1016/S0883-5403(98)90037-7
  11. D'Lima DD, Lemperle SM, Chen PC, Holmes RE, Colwell Jr CW. Bone response to implant surface morphology. J Arthroplasty 1998;13:928-34 https://doi.org/10.1016/S0883-5403(98)90201-7
  12. Li J, Liao H, Fartash B, Hermansson L, Johnsson T. Surface-dimpled commercially pure titanium implant and bone ingrowth. Biomaterials 1997;18: 691-6 https://doi.org/10.1016/S0142-9612(96)00185-8
  13. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem 1994;56:340-7 https://doi.org/10.1002/jcb.240560310
  14. Kasemo B, Gold J. Implant surfaces and interface processes. Adv Dent Res 1999;13:8-20 https://doi.org/10.1177/08959374990130011901
  15. Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res 1987;21:1395-414 https://doi.org/10.1002/jbm.820211205
  16. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  17. Thomas KA, Cook SD. Relationship between surface characteristics and the degree of bone-implant integration. J Biomed Mater Res 1992;26: 831-3 https://doi.org/10.1002/jbm.820260612
  18. Feighan JE, Goldberg VM, Davy D, Parr JA, Stevenson S. The influence of surface-blasting on the incorporation of titanium alloy implants in a rabbit intramedullary model. J Bone Joint Surg Am 1995;77:1380-95 https://doi.org/10.2106/00004623-199509000-00015
  19. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522-34 https://doi.org/10.1067/mpr.2000.111966
  20. Lacefield WR. Materials characteristics of uncoated/ ceramic coated implant materials. Adv Dent Res 1999;13:21-6 https://doi.org/10.1177/08959374990130011001
  21. Gaggl A, Schultes G, Muller WD, Karcher H. Scanning electron microscopical analysis of lasertreated titanium implants surfaces-acomparative study. Biomaterials 2000;21:1067-73 https://doi.org/10.1016/S0142-9612(00)00002-8
  22. Craig RG. Restorative dental materials. 9th ed. st Louis : Mosby ; 1933 P.75-77
  23. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implants surface characteristics in the healing of bone. Crit Rev Oral Biol Med 1996;7(4):329-45 https://doi.org/10.1177/10454411960070040301
  24. Boyan BD, Hummert TW, Dean DD. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137-46 https://doi.org/10.1016/0142-9612(96)85758-9
  25. Cochran DL, Simpson J, Weber HP, Buser D. Attachment and growth of periodontal cells on smooth and rough titanium. Int. J Oral Maxillofac Implants 1994;9:289-97
  26. Brunette DM. The effect of implant surface topography on the behavior of cells. Int. J Oral Maxillofac Implants 1998;3:231-46
  27. Thomas KA, Cook JKJF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res 1987;21:1395-414 https://doi.org/10.1002/jbm.820211205
  28. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants, a histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  29. Hulbert SF, Cooke FW, Klawitter JJ, Leonard RB, Sauer BW, Moyle DD, Skinner HB. Attachment of prostheses to the musculoskeletal system by tissue in growth and mechanical interlocking. J Biomed Mater Res 1973;7:1-23
  30. Sauer BW, Weinstein AM, Klawitter JJ, Hulbert SF, Leonard RB, Bagwell JG. The role of porous polymeric materials in prosthesis attachment. J Biomed Mater Res 1974;8:145-53 https://doi.org/10.1002/jbm.820080315
  31. Roderic L. Composite biomaterials. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton, FL:CRC Press;1995. p.309-14
  32. Sung-Am Cho, Sang-Kyoo Jung. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 2003;24:4859-4863 https://doi.org/10.1016/S0142-9612(03)00377-6
  33. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int. J Oral Maxillofac Implants 1997;2:69-75
  34. Eberhardt AW, Kim BS, Rigney ED, Kutner GL, Harte CR. 9 effects of precoating surface treatments on fatigue of Ti-6Al-4V. J Applied Biomat 1995;6:171-4 https://doi.org/10.1002/jab.770060305
  35. Bates JF, Stafford GD, Harrison A. Masticatory function- a review of the literature.(II) Speed of movement of mandible, rate of chewing and forces developed in chewing. J Oral Rehabil 1975;2:349- 61 https://doi.org/10.1111/j.1365-2842.1975.tb01535.x