
The use of osseointegrated dental implants had
become a successful procedure for the treatment
of complete,1 partial2 edentulism, and single-
tooth replacements in both the anterior and pos-
terior regions of the mouth.3-5

A stable anchoring is the primary goal of
implant dentistry. Osseointegration is defined
as the direct connection from implant to living
remodelling bone without any soft tissue com-
ponent between implant and bone on the light
microscopic level.6 A rapid osseointegration is asso-
ciated with improved secondary stability and, thus,
with a favorable prognosis for long-term suc-
cess of the implant.7,8 Initial stability has to be

achieved by reduction of micromotion.9

In order to reduce micromotion initially, and to
improve osseointegration later on, many variants
in surface geometry of the implant have been
developed.10-12 It is well known that surface geom-
etry determines the interaction s of proteins and
cells with the implant surface,13,14 and that increased
surface roughness is associated with better cell
adherence, higher bone-implant contact(BIC),
and improved biomechanical interaction.6,15-19 

However the sintering process can lead to brit-
tleness and reduced fatigue strength.20 The laser
processing is a new method of treating implant sur-
faces to produce a high degree of purity with
enough roughness for good osseointergration.21 
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Statement of problem. Many surface processing methods of dental implant have been
developed, the laser processing is one of them. 

Purpose. This study was to investigate in vitro the fatigue resistance of implants treated with
laser method(CSM implant, CSM Company, Daegu, Korea).

Material and methods. Fatigue tests of 23 laser treated CSM implant(CSM Company,
Daegu, Korea) were conducted using Instron 8871 (Load cell, 5 kN, Instron Co., England), accord-
ing to ISO 14801 (2003),

Results. From 300 N, each specimens were not fractured and withstood until more than 5,000,000
cycle. 

Conclusion. Within the limits of this in vitro study, implants treated with laser method (CSM
implant, CSM Company, Daegu, Korea) have had enough rigidity and fatigue resistance to use
clinically with reliance.
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Fatigue is defined as progressive crack propa-
gation resulting in catastrophic fracture under
repeated loading below yield stress.22 In the
implant manufacturers, fatigue may be partially
or completely responsible for the mechanical
failures. So, the individual implant manufactur-
ers attempted to avoid mechanical failures by
increasing the implant diameter, modifying the
screw joint design, and/or changing the materi-
al.

The purpose of this study was to investigate in
vitro the fatigue resistance of implants treated with
laser method(CSM implant, CSM Company,
Daegu, Korea).

MATERIAL AND METHODS

Implant samples

A total of 23 screw shaped, commercially pure
titanium implants with a length of 10 mm, a
diameter of 3.75 mm were used in present study.
They treated with laser method (CSM implant,
CSM Company, Daegu, Korea).

To insure that the laser treatment did not
severely change the shape of the screws, Nikon
Measurescope 10 (Nikon, Tokyo, Japan) equipped
with a digital counter was used to measure the out-
er diameter of five randomly chosen implants from
the each groups. 

Load-displacement test

First to establish the optimal load for the fatigue,
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Fig. 1. Implant fixture (CSM implant, CSM Company, Daegu,
Korea).

Fig. 2. Fatigue testing machine and jig (Instron 8871, Instron Co., England).



static compressive strength was measured using
the specimen holding jig proposed by the method
of fatigue testing (ISO 14801:2003). The speci-
men shall be clamped such that its axis makes a
30�angle with the loading direction of the testing
machine and the distance from the centre of the
hemisphere to its clamping plane is defined 11 mm.
Five specimens were randomly selected and test-
ed at speed of 1.0 mm/min using a universal
testing machine (Instron 4200, Instron Co., USA).
Maximum load value on the load-displacement
curve had been set for static compressive strength.

Fatigue test

Fatigue tests were conducted according to ISO
14801 (2003). Instron 8871 (Load cell, 5 kN,
Instron Co., England) was used for this experiment
as fatigue testing machine. The specimens should
be clamped such that was identical to that
described above. A cyclic, sinusoidal loading
program was applied at frequency � 14Hz. The
enviornment should be kept at room temperature
during the testing. It generated a load-cycle dia-
gram by testing specimens at a series of loads until
a lower limit is reached at which at least three spec-

imens survive and none fail in 5×106 cycles. It
began with about 80% of the mean static com-
pressive strength. Thereafter the test had took over
again at 80% of the former load. Fatigue limit was
defined maximum load at which at least three spec-
imens should reach 5×106 cycles with no failures.

RESULTS

Table I, Fig. 3 shows the results of static com-
pressive test and load-displacement curve, respec-
tiuely. Mean value was 1145 N.

The test were begun with 916 N, that is about
80% of the mean static compressive strength(1145
N).  Table II shows the results of the fatigue test.
From 300 N, that is about 80% of 375 N, each were
not fractured and withstood until 6,008,134 cycle,
5,051,600 cycle, 5,009,900 cycle, so that the fatigue
limit was revealed at 300 N. 

The strength versus number of cycles to failure
curve(S-N curve) and the aspect of specimens after
the test is shown in Fig. 4, 5, respectively. There
was no observed one such a breakage, crack,
deformation, and so on at the specimens revealed
the fatigue limit. 
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Fig. 3. Load-displacement curve of static compressive test.

Table I. Results of static compressive test

Specimen No.
Maximum compressive 

strength(N)

Specimen 1 1064

Specimen 2 1138

Specimen 3 1150

Specimen 4 1129

Specimen 5 1246

Mean±S.D. 1145±65.44
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Test Load: 916 N Test Load: 733 N Test Load: 586 N 

Test Load : 469 N Test Load : 375 N Test Load : 300 N

Fig. 4. S-N curve obtained the fatigue test.

Table II. Results of the fatigue test

Load (N) Failure cycle

Specimen 1 7,500

916 Specimen 2 10,513

Specimen 3 15,600

Specimen 1 22,841

733 Specimen 2 22,899

Specimen 3 17,919

Specimen 1 93,927

586 Specimen 2 57,112

Specimen 3 59,718

Specimen 1 77,614

469 Specimen 2 128,202

Specimen 3 158,561

Specimen 1 287,541

375 Specimen 2 165,396

Specimen 3 657,914

Specimen 1 6,008,134

300 Specimen 2 5,051,600

Specimen 3 5,009,900

Fig. 5. Aspect of specimens after the fatigue test.



DISCUSSION

Several studies have reported that the rough
implant surfaces of varying topography generally
demonstrate increased bone apposition and high-
er removal torque when compared to machined
surface.23-26 Using the transcortical model, Thomas
et al.27 found that implants with a roughened
surface had a great interface strength and high-
er surface coverage by bone than smooth implants.
Buser et al.28 found that increasing implant surface
roughness generally correlated with increased sur-
face coverage by bone. It is assumed that rough
surface is one of the important factors in suc-
cess of dental implants.

Laser treatment of metal implants may be a
very interesting technology for the structuring of
implant surfaces. Bone ingrowth into pores caus-
es interlocking of the surrounding bone tissue with
the implant, and may result in improved bio-
mechanical stability and higher resistance to
fatigue loading.29-31

Cho et al.32 reported that the laser treated
implant achieved higher removal torque values
compared to the machined control group. The
greater removal torque values may be related
primarily to the higher bone to implant con-
tact.33

It has been reported that roughening titanium
alloy may decrease the fatigue strength.34

Fatigue strength is the stress at which a material
fails under repeated loads.

The fatigue strength of implants treated with laser
method (CSM implant, CSM Company, Daegu,
Korea) were examined. It revealed the implants
to an fatigue limit of 300 N. This value is enough
to allow clinical usage of them. And this results
indicated that laser treatment would not adverse-
ly affect the fatigue strength of the dental implant. 

In present study, specimens were exposed
8mm above the face of the test jig to simulate 3 mm

bone resorption. Moreover, the fixed cycling fre-
quency of 14Hz used was higher than the report-
ed chewing rate(1 to 2 Hz).35 It might provide a
worst case to the test.

Finally, there might be need for prospective
and retrospective reports of short and long-term
to evaluate and verify the success and the accom-
panied problems for CSM implant systems. 

CONCLUSION 

Within the limits of this in vitro study, the fol-
lowing conclusion can be drawn : Implants treat-
ed with laser method (CSM implant, CSM
Company, Daegu, Korea) have shown adequate
rigidity and resistance to fatigue, so that the
clinical use of them may be reliable. Also, it may
be concluded that laser treatment would not
adversely affect the fatigue strength of the dental
implant. 
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