DOI QR코드

DOI QR Code

Expression of Superoxide Dismutase Isoenzyme Genes and Enzyme Activities in Rice Irradiated with a High-Dose Gamma Ray

고선량 감마선을 조사한 벼에서 SOD isoenzyme들의 유전자 발현 및 효소활성

  • Chae Hyo-Seok (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim Jin-Hong (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Chung Byung-Yeoup (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim Jae-Sung (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Wi Seung-Gon (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Baek Myung-Hwa (Division of Radiation Application Research, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Cho Jae-Young (Division of Biological Resources Sciences, Chonbuk National University)
  • 채효석 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 김진홍 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 정병엽 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 김재성 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 위승곤 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 백명화 (한국원자력연구소 방사선연구원.방사선이용연구부) ;
  • 조재영 (전북대학교.응용생명공학부)
  • Published : 2006.04.01

Abstract

We investigated relations between physiological damages and gene expression and enzyme activities of superoxide dismutase(SOD) isoenzymes in leaves of rice (Oriza sativa L. cv. Ilpoombyeo) plants irradiated with a high-dose gamma-ray. Gamma-irradiation with 500 Gy caused significant decreases in the contents of protein, chlorophyll and carotenoid in the rice leaves by 24 h, especially reducing the chlorophyll contents up to 26% relative to the control. In contrast, gene expressions of SOD isoenzymes were kept higher in the irradiated leaves until 24 h after the irradiation than in the control and they started to noticeably decrease at 48 h, finally being lower in the irradiated leaves at 72 h than in the control. In the case of enzyme activities of SOD isoenzymes, some CuZn-SOD isoenzymes showed slightly increased activities until 48 h after the irradiation but at 72 h, all isoenzyme activities markedly decreased in the irradiated leaves below the control levels. In conclusion, 500 Gy gamma-irradiation used in the current study caused decreases in the contents of protein, chlorophyll and carotenoid as symptoms for physiological damages. Although such physiological damages were not directly related to the gene expressions and enzyme activities of SOD isoenzymes until 24 h after the irradiation, the damages at 72 h were reasonably attributable to their reduction.

일품벼(Oryza sativa L. cv. Ilpoombye)에 고선량 감마선을 조사한 후 벼 잎의 생리적 손상과 항산화 효소인 superoxide dismutase (SOD)의 isoenzyme 수준에서의 유전자 발현 및 효소활성 변화와의 연관성을 조사하였다. 500 Gy의 감마선 조사는 24 h 이내에 벼 잎의 단백질, 엽록소, 그리고 카로테노이드의 함량을 유의적으로 감소시켰으며 특히 엽록소는 대조구에 비해 26% 이상 감소하였다. 반면에 SOD isoenzyme들의 유전자 발현은 감마선 조사 후 6 h부터 24 h까지는 전반적으로 대조구보다. 높게 유지되었으나 48 h부터 현저히 감소되어 72h에는 모든 isoenzyme들의 유전자 발현 이 대조구보다. 낮았다. 그러나 isoenzyme들의 효소활성은 조사구에서 일부 CuZn-SOD isoenzyme들의 경우 48 h까지 대조구보다. 약간 높았지만 72h에는 모두 현저히 감소하였다. 따라서 본 연구에 사용된 500 Gy의 고선량 감마선은 단백질, 엽록소, 그리고 카로테노이드 함량의 감소를 초래하며, 조사 후 초기단계에는 이러한 생리적 손상과 무관하게 일시 적으로 SOD isoenzyme들의 유전자 발현을 증가시키지만 72 h 이후에는 유전자 발현과 효소활성을 동시에 감소시키면서 산화스트레스에 의한 생리적 손상을 유도하는 것으로 생각된다.

Keywords

References

  1. Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107, 1049-1054 https://doi.org/10.1104/pp.107.4.1049
  2. Alscher, R. G. and J. L. Hess. 1993. Antioxidants in higher plants. pp. 1-174, CRC press Inc., Boca Raton. Florida
  3. Asada, K. 1996. Radical production and scavenging in the chloroplast. pp. 123-150, In N. R. Baker (ed.), Photosynthesis and the Environments, Dordrecht, Kluwer Acad. Publ., Boston
  4. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 176-287
  5. Bowler. C, W. Van Camp, M. Van and D. Inze. 1994. Superoxide dismutase in plants. Crit. Rev. Plant Sci. 13, 199-218 https://doi.org/10.1080/07352689409701914
  6. Bowler, C., M. Van and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  7. Bradford, M. 1976. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Bueno, P., J. Varela, G. Gimenez-Gallego and L. A. del. Rio. 1995. Peroxisomal copper, zinc superoxide dismutase. Plant Physiol. 108, 1151-1160 https://doi.org/10.1104/pp.108.3.1151
  9. Choi, S. M., S. W. Jeong, W. J. Jeong, S. Y. Kwon, W. S. Chow and Y. I. Park. 2002. Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta 216, 315-324 https://doi.org/10.1007/s00425-002-0852-z
  10. Dubner, D., P. Giscone, I. Jaitovich and M. Perez. 1995. Free radicals production and estimation of oxidative stress related to gamma irradiation. Biol. Trace Elem. Res. 47, 265-270 https://doi.org/10.1007/BF02790126
  11. Hardmeier, R., H. Hoeger, F. K. Susanne, A. Khoschsorur and G. Lubec. 1997. Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc. Natl. Acad. Sci. 94, 7572-7576
  12. Haythem, M., J. Moez, L. Ferid and E. A. Mohamed. 2004. Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses:modulation by salt stress. Plant Physiol. Biochem. 42, 717-722 https://doi.org/10.1016/j.plaphy.2004.07.005
  13. Kaminaka, H., S. Morita, H. Yokoi, T. Masmura and K. Tanaka. 1997. Molecular cloning and characterization of a cDNA for plastidic copper/zinc-superoxide dismutase in rice (Oryza sativa L.). Plant Cell Physiol. 38, 65-69 https://doi.org/10.1093/oxfordjournals.pcp.a029086
  14. Kim, J. H., B. Y. Chung, J. S. Kim, S. G. Wi, D. H. Yang, C. H. Lee and M. C. Lee. 2004. Construction of gene-specific primers for various antioxidant isoenzyme genes and their expression in rice (Oryza sativa L.) seedlings obtained from gamma-irradiated seeds. J. Photosci. 11(3), 115-120
  15. Kim, J. H., B. Y. Chung, J. S. Kim and S. G. Wi. 2005a. Effects of in Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annum L.) plants. J. Plant Biol. 48(1), 47-56 https://doi.org/10.1007/BF03030564
  16. Kim, J. H., B. Y. Chung, M. H. Baek, S. G. Wi, D. H. Yang, M. C. Lee and J. S. Kim. 2005b. Expression of antioxidant isoenzyme genes in rice under salt stress and effects of jasmonic acid and ${\gamma}-radiation$. Agric. Chem. Biotechnol. 48(1), 1-6
  17. Kim, J. S., S. K. Chae, M. H. Baek and D. H. Kim. 2000. Effects of low dose ${\gamma}-radiation$ on the radiosensitivity of soybean (Glycine max L.) plant. Kor. J. Environ. Agr. 19(4), 324-327
  18. Kim, J. S., J. K. Kim, M. H. Baek and D. H. Kim. 1999. Effects of low dose ${\gamma}-ray$ on the early growth of tomato and the resistance to subsequent high dose of radiation. J. Kor. Asso. Radiat. Prot. 24(3), 123-129
  19. Kim, J. S., M. H. Baek, D. H. Kim, Y. K. Lee and Y. B. Lee. 2001. Effects of low dose gamma radiation on the early growth of pepper and the resistance to subsequent high dose of radiation. Kor. J. Environ. Biol. 19(1), 71-77
  20. Konopacka, M. and J. R. Wolny. 2001. Antioxidant vitamins C, E and ${beta}-carotene$ reduce DNA damage before as well as after ${\gamma}-ray$ irradiation of human lymphocytes in vitro. Mutation Res. 491, 1-7 https://doi.org/10.1016/S1383-5718(00)00133-9
  21. Kwon, S. T., E. A. Jung and J. S. Kim. 2001. Effect of ${\gamma}-radiation$ on growth and antioxidant enzyme activities in red pepper. Kor. J. Life. Sci. 11(6), 612-617
  22. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159, 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  23. Lee, H. Y., J. S. Kim, M. H. Baek, Y. K. Lee and D. S. Im. 2002. Effects of low dose ${\gamma}-radiation$ on the growth, activities of enzymes and photosynthetic activities of gourd (Lagenaria siceraria). Kor. J. Environ. Biol. 20, 197-204
  24. Lichtenthaler, H. K. 1987. Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 148, 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  25. Luckey, T. D. 1980. Hormesis with ionizing radiation. pp. 32-38, CRC Press Inc., Boca Ranton. Florida
  26. Miller, M. W. 1987. Radiation hormesis in plants. Health Phys. 52, 607-616 https://doi.org/10.1097/00004032-198705000-00012
  27. Naik, G. H., K. I. Priydarsini, J. G. Satav, M. M. Banavalikar and D. P. Sohoni. 2003. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochem. 63, 97-104 https://doi.org/10.1016/S0031-9422(02)00754-9
  28. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen scavenging enzymes in low temperature- sensitive and tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109, 105-113 https://doi.org/10.1016/0168-9452(95)04156-O
  29. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101, 7-12 https://doi.org/10.1104/pp.101.1.7
  30. Streller, S. and G, Wingsle 1994. Pinus sylvestris L. needles contain extracellular CuZn superoxide dismutase. Planta 192(2), 195-201 https://doi.org/10.1007/BF01089035
  31. Van Camp, W., D. Inze and M. Van Montagu. 1997. The regulation and function of tobacco superoxide dismutase. Free Radic. Biol. Med. 23, 515-520 https://doi.org/10.1016/S0891-5849(97)00112-3
  32. Zaka, R., C. M. Vandecasteele and M. T. Misset. 2002. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and $G_6PDH$ activities in Stipa capillata (Poaceae). J. Exp. Bot. 53(376), 1979-1987 https://doi.org/10.1093/jxb/erf041