DOI QR코드

DOI QR Code

Study on Production of Poly-γ-Glutamic Acid by Bacillus subtilis CH-10

Bacillus subtilis CH-10에 의한 폴리감마글루탐산의 생산에 관한 연구

  • Gu Na-Yeon (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim Choon-Hee (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim Byung-Woo (Department of Life Science and Biotechnology, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kwon Hyun-Ju (Department of Life Science and Biotechnology, Dong-Eui University) ;
  • Kim Dong-Eun (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim Young-Man (Department of Food and Nutrition/Oriental Biotech. Co., Dong-Eui University) ;
  • Jeon Sung-Jong (Department of Biotechnology and Bioengineering, Dong-Eui University)
  • 구나연 (동의대학교 생명공학과) ;
  • 김춘희 (동의대학교 바이오물질제어학과) ;
  • 김병우 (동의대학교 생명응용과학과) ;
  • 남수완 (동의대학교 생명공학과) ;
  • 권현주 (동의대학교 생명응용과학과) ;
  • 김동은 (동의대학교 생명공학과) ;
  • 김영만 (동의대학교 식품영양학과 및 (주)오리엔탈바이오텍) ;
  • 전숭종 (동의대학교 생명공학과)
  • Published : 2006.04.01

Abstract

A bacterium that produced a large amount of poly-$\gamma$-glutamate (PGA) was isolated from the compost and designated as Bacillus subtilis CH-10. The optimum temperature and pH for PGA production were at $37^{\circ}C$ and 7.5, respectively. The maximum amount of PGA production (18.84 mg/ml) was obtained when it was grown in a medium containing 3% L-glutamate and 5% sucrose at $37^{\circ}C$ with shaking. The result that the L-glutamate significantly induced PGA production indicates that it produces a PGA by the glutamate dependent manner. Some properties of the PGA obtained at different times of cultivation were investigated by SDS-PAGE and ninhydrin analysis. The PGA production was elongated along with cultivation time and maximum amount was achieved at 96 h. Average molecular weight of PGA was estimated to be 1100 kDa by FDNB method.

폴리감마글루탐산(PGA)을 대량생산하는 균주를 축분퇴비에서 분리하고 생리 생화학적 특징 및 16s rRNA 염기서열을 분석한 결과, Bacillus subtilis로 동정하고 strain CH-10 으로 명명하였다. PGA 생산을 위한 배지의 최적 온도와 pH는 각각 $37^{\circ}C$, 7.5 이었다. 또한 배지성분 중에서 PGA 생산에 최적인 탄소원과 질소원은 각각 5% sucrose와 3% L-glutamate인 것으로 나타났다. 이 균주는 L-glutamate에 의해 PGA 생산이 대량으로 유도되었고 따라서 질소원으로 L-glutamate를 반드시 필요로 하는 glutamate 의존성 균주인 것으로 사료되었다. 배양시간에 따라 생산된 PGA의 생화학적 특정을 SDS-PAGE와 ninhydrin 분석을 통하여 검토하였다. PGA의 생산량은 배양시간에 따라 증가하였고 배양 후 96시간에서 최고 생산량을 나타내었다, 생산된 PGA의 평균분자량을 FDNB법으로 분석한 결과, 1,100 kDa인 것으로 나타났다.

Keywords

References

  1. Abe, K., Y. Ito, T. Ohmachi and Y. Asada. 1997. Purification and properties of two isozymes of ${\gamma}-glutamyltranspeptidase$ from Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 61, 1621-1625 https://doi.org/10.1271/bbb.61.1621
  2. Aono, R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Biochem. J. 245, 467-472 https://doi.org/10.1042/bj2450467
  3. Ashiuchi, M. and H. Misono. 2002. Biopolymers, vol. 7, Chapter 6, pp. 123. in: Fahnestock, S. R. and A. Steinbchel (Eds.), Wiley-VCH, Weinheim
  4. Ashiuchi, M. and H. Misono. 2002. Biochemistry and molecular genetics of $poly-{\gamma}-glutamate$ synthesis. Appl. Microbiol. Biotechnol. 59, 9-14 https://doi.org/10.1007/s00253-002-0984-x
  5. Ashiuchi, M., H. Nakamura, T. Yamamoto, T. Kamei, K. Soda, C. Park, M. H. Sung, T. Yagi and H. Misono. 2003. $Poly-{\gamma}-glutamate$ depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J. Mol. Catalysis B: Enzymatic 23, 249-255 https://doi.org/10.1016/S1381-1177(03)00087-0
  6. Ashiuchi M, K. Shimanouchi, H. Nakamura, T. Kamei, K. Soda, C. Park, M. H. Sung and H. Misono. 2004. Enzymatic synthesis of $high-molecular-mass poly-{\gamma}-glutamate$ and regulation of its stereochemistry. Appl. Environ. Microbiol. 70, 4249-4255 https://doi.org/10.1128/AEM.70.7.4249-4255.2004
  7. Birrer, G. A., A. M. Cromwick and R. A. Gross. 1994. $Poly-{\gamma}-glutamic$ acid formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int. J. Biol. Macromol. 16, 265-275 https://doi.org/10.1016/0141-8130(94)90032-9
  8. Cheng, C., Y. Asada and T. Aaida. 1989. Production of $poly-{\gamma}-glutamic$ acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem. 53, 2369-2375 https://doi.org/10.1271/bbb1961.53.2369
  9. Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of $poly-{\gamma}-glutamic$ acid from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56, 1031-1035 https://doi.org/10.1271/bbb.56.1031
  10. Hara, T. 2000. Desert greening. Greening by utilization of microbial macromolecules. Kobunshi 49, 367-370 https://doi.org/10.1295/kobunshi.49.367
  11. Hezayen, F. F., B. H. A. Rehm, B. J. Tindall and A. Steinbuchel. 2001 Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular $poly({\gamma}-glutamic\;acid)$. Int. J. Syst. Evol. Microbiol. 51, 1133-1142 https://doi.org/10.1099/00207713-51-3-1133
  12. Holzer, H. 1969. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv. Enzymol. 32, 297-326
  13. Ito, Y., T. Tanaka, T. Ohmachi and Y. Asada. 1996. Glutamic acid independent production of $poly-{\gamma}-glutamic$ acid by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60, 1239-1242 https://doi.org/10.1271/bbb.60.1239
  14. King, E. C., A. J. Blacker, and T. D. M. Bugg. 2000. Enzymatic breakdown of $poly-{\gamma}-D-glutamic$ acid in Bacillus licheniformis: identification of a $polyglutamyl-{\gamma}-hydrolase$ enzyme. Biomacromolecules 1, 75-83 https://doi.org/10.1021/bm990001n
  15. Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka and M. Tanguchi. 1993. Production of $poly-{\gamma}- glutamic$ acid by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem. 57, 1212-1213 https://doi.org/10.1271/bbb.57.1212
  16. Kubota, H., Y. Nambu and T. Endo. 1996. Alkaline hydrolysis of $poly-{\gamma}-glutamic$ acid produced by microorganism. J. Poly. Sci. Chem. 34, 1347-1351 https://doi.org/10.1002/(SICI)1099-0518(199605)34:7<1347::AID-POLA24>3.0.CO;2-8
  17. Kunioka, M. and Goto, A. 1994. Biosynthesis of $poly({\gamma}- glutamic\;acid)$ from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol. 40, 867-872 https://doi.org/10.1007/BF00173990
  18. Prez-Camero, G., F. Congregado, J. J. Bou and S. Muoz- Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial $poly-{\gamma}-glutamic$ acid. Biotechnol. Bioeng. 63, 110- 115 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<110::AID-BIT11>3.0.CO;2-T
  19. Shih, I. L. and Y. T. Van. 2001. The production of $poly-{\gamma}- glutamic$ acid from microorganisms and its various applications. Bioresource Technology 79, 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8
  20. Stadtman, E. R. 1966. Allosteric regulation of enzyme activity. Adv. Enzymol. 28, 41-154
  21. Sveath, P. H. A., N. S. Mair, M. E. Sharpe and J. G. Holt. 1984. Bergy's Manual of Ayatematic Bacteriology. Vol. 2, Williams and Wilkins, Baltimore
  22. Tanaka, T., O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Purification and characterization of $poly-{\gamma}-glutamic$ acid hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci. Biotechnol. Biochem. 57, 2148-2153 https://doi.org/10.1271/bbb.57.2148
  23. Tanaka, T., T. Yaguchi, O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Screening for microorganism having $poly-{\gamma}-glutamic$ acid endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci. Biotechnol. Biochem. 57, 1809-1810 https://doi.org/10.1271/bbb.57.1809
  24. Troy, F. A. 1973. Chemistry and biosynthesis of the poly $({\gamma}-D-glutamyl)$ capsule in Bacillus licheniformis. 1. Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem. 248, 305-316
  25. Zhao, X. Q., K. H. Park, Y. Y. Jin, I. H. Lee, Y. Y. Yang and J. W. Suh. 2005. Isolation and characterization of a new ${\gamma}-polyglutamic$ acid producer, Bacillus mesentericus MJM1, from korean domestic chungkukjang bean paste. J. Microbiol. Biotechnol. 15, 59-65

Cited by

  1. Aerobic Composting Process of Garbage using Thermoacidophilic Bacillus sp. SJ-15. vol.17, pp.5, 2007, https://doi.org/10.5352/JLS.2007.17.5.735