DOI QR코드

DOI QR Code

A Study of Data Storage Device Utilizing AFM technology

AFM을 이용한 데이터 저장 소자 연구

  • 최정환 (충북대학교 전기전자컴퓨터공학부) ;
  • 박근형 (충북대학교 전기전자컴퓨터공학부)
  • Published : 2006.05.01

Abstract

A new reading technology for the ultra-high density data storage device utilizing AFM technology was proposed and its experimental results were discussed in this paper. For the experiments, an about $2{\mu}m$ thick conductive polymer layer was spin-coated on the heavily doped n-type Si wafer and an about $0.1{\mu}m$ thick PMMA layer was also been spin-coated on it. After then, the $5{\times}5$ memory way was fabricated by making indents on the surface of the wafer with the heated AFM tip, and the data reading was performed by scanning the surface with the tip biased at 10 V and the measuring the current flowing out at the end of the tip. The experimental results clearly showed that the new data reading technology worked superbly. The current measured was about 0.92 pA at the cell with the indent, and it was not only below 0.31 pA at the cell without the indent, but also at the cell where the indent was erased.

Keywords

References

  1. E. Grochowski and R. Hoyt, 'Future trends in hard disk drives', IEEE Trans. on Magnetics, Vol. 32, No. 3, p. 1850, 1996
  2. J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, 'Writing and reading perpendicular magnetic recording media patterned by a focused ion beam', Appl. Phys. Lett., Vol. 78, p. 990, 2001
  3. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren 'Disk recording beyond 100 Gb/in2 : Hybrid recording?', J. Appl. Phys., Vol. 87, Iss. 9, p. 5398, 2000
  4. G. Binnig, C. F. Quate, and Ch. Gerber, 'Atomic force microscope', Phys, Rev. Lett., Vol. 56, p. 930, 1986
  5. R. Luthi, E. Meyer, M. Bammerlin, A. Baratoff, T. Lehmann, L. Howald, C. Gerber, and H. -J. Guntherodt, 'Atomic resolution in dynamic force microscopy across steps on Si(111l) 7x7', Zeitschrift fur Physick B Condensed Matter, Vol. 100, p. 165, 1996 https://doi.org/10.1007/s002570050106
  6. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, 'Nanometer-scale lithography using the atomic force microscope', Appl. Phys. Lett., Vol. 61, p. 2293, 1992 https://doi.org/10.1063/1.108268
  7. Minne, S. C., Soh, H. T., Flueckiger, Ph., and Quate, C. F., 'Fabrication of 0.1 um metal oxide semiconductor field-effect transistors with the atomic force microscope', Appl. Phys. Lett., Vol. 66, p. 703, 1995 https://doi.org/10.1063/1.114105
  8. M. Heyde, K. Rademann, B. Cappella, M. Geuss, H. Sturm, T. Spangenberg, and H. Niehus, 'Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope', Rev. Sci. Instrum., Vol. 72, p. 136, 2001
  9. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, and C. F. Quate, 'Terabit-per-square-inch data storage with the atomic force microscope', Appl. Phys. Lett., Vol. 75, p. 3566, 1999 https://doi.org/10.1063/1.125390
  10. H. J.Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Rugar, 'Highdensity data storage using proximal probe techniques', IBM J. Res. Dev., Vol. 39, p. 681, 1995
  11. P. Vettiger, M. Despont, U. Drechsler, U. Du rig, W. Ha berle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, 'The 'Millipede' - More than one thousand tips for future AFM data storage', IBM J.bRes. Dev., Vol. 44, p. 323, 2000 https://doi.org/10.1147/rd.443.0323
  12. K. Wilder, C. F. Quate, D. Adderton, R. Bernstein, and V. Elings 'Noncontact nanolithography using the atomic force microscope', Appl. Phys. Lett., Vol. 73, p. 2527, 1998
  13. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, 'Dip-pen nanolithography', Science, Vol. 283, p. 661, 1999 https://doi.org/10.1126/science.283.5402.661
  14. Ried, R. P., Mamin, H. J., Terris, B. D., L.-S. Fan, and Rugar, D., '6-MHz 2-N/m piezo-resistive atomic-foree-microscope cantilevers with incisive tips', J.Microelectromech. Syst., Vol. 6, p. 294, 1997 https://doi.org/10.1109/84.650125