단항순열행렬에 의해 구성된 비실베스터 하다마드 행렬의 고유치

Eigenvalues of Non-Sylvester Hadamard Matrices Constructed by Monomial Permutation Matrices

  • 이승래 (서울대학교 전기컴퓨터공학부) ;
  • 노종선 (서울대학교 전기컴퓨터공학부, 서울대학교 차세대무선통신연구센터) ;
  • 성굉모 (서울대학교 전기컴퓨터공학부, 대한전자공학회)
  • Lee Seung-Rae (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • No Jong-Seon (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Sung Koeng-Mo (School of Electrical Engineering and Computer Science, Seoul National University)
  • 발행 : 2006.04.01

초록

본 논문에서는 단항순열행렬에 의해 구성된 다양한 비실베스터 하다마드 행렬의 고유치가 유도 되었고 이는, 새로 구성한 행렬과 실베스트 하다마드 행렬의 고유치와의 연관성을 보여준다.

In this paper, the eigenvalues of various non-Sylvester Hadamard matrices constructed by monomial permutation matrices are derived, which shows the relation between the eigenvalues of the newly constructed matrix and Sylvester Hadamard matrix.

키워드

참고문헌

  1. Stephen B. Wicker, 'Error Control systems for digital communication and storage,' Prentice Hall International, Inc., 1995
  2. N. Ahmed and K. R. Rao, 'Orthogonal Transforms for Digital Signal Processing,' Springer Verlag, 1975
  3. D. V. De Ville, W. Philips, R. V. de Walle, and I. Lemahieu, 'Image Scrambling Without Bandwidth Expansion,' IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, NO. 6, June 2004
  4. V. Senk, V. D. Delic, and V. S. Milosevic, 'A New Speech Scrambling Concept Based on Hadamard Matrices,' IEEE Signal Processing Letters, Vol. 4, NO. 6, June 1997
  5. S. S. Agaian, 'Hadamard Matrices and Their Applications,' Lecture Notes in Mathematics, 1168, 1985
  6. I. Gohberg, P. Lancaster, and L. Rodman, 'Matrices and Indefinite Scalar Products,' Birkhsuser Verlag, 1983