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ABSTRACT

In this paper, the eigenvalues of various non-Sylvester Hadamard matrices constructed by monomial permutation

matrices are derived, which shows the relation between the eigenvalues of the newly constructed matrix and Sylvester

Hadamard matrix.
I. Introduction

A Hadamard matrix A of order n is an n x n square
matrix of +1°‘s and -1’s such that any pair of distinct
rows is orthogonal (i.e., their inner product is zero). In
the Hadamard matrix invented by Sylvester (1867),
placing any two columns or rows side by side gives
half the adjacent cells the same sign and the half, the
opposite sign. The following serves as a formal defi-
nition of Hadamard matrix.

Let N be the set of natural numbers.

Definition I.1: A Hadamard matrix H, of order

n € N is an n x n matrix of +1°s and -1’s such that
H HI =nI, where I, is the n x n identity matrix
and HT denotes transpose of H,.

There are various construction methods for
Hadamard matrices such as Sylvester construction and
Paley construction (see [1], Chapter 6). In this paper,
we will modify the Sylvester construction of order
2 ke N.

It is known that Hadamard transform is an orth(;go-
nal transform with practical purpose for representing
signals and images especially for the data compression

[2]. A complete set of 2" Walsh functions of order 7,
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gives a Hadamard matrix A.. Walsh Hadamard trans-

form (WHT) is used for the Walsh representation of the
data sequences in image coding and for signature se-
quence in the CDMA mobile communication systems.

It is known that the sampled Walsh function corre-
sponds to row vectors of the Hadamard matrices A,.
Hadamard matrices can be used to make error-correct-
ing codes, in particular, the Reed-Muller codes.

Let Z,;and O, j € NUO be the (27 x 27) identity
matrix and zero matrix, respectively.

We also define matrices as

7. = .é(k—l) Oz(k—l) S, — 02(1(—1) .]é(k—l)
2 02(k—l) - [2&71) > 2 [Z(k—l) 02(k—1)

OZ(k—l) .[z(k—l)
Sy —l: ~ Lo Ogos }fork‘ > 1.

Sylvester Hadamard matrix H, can be represented as
]y2k+1:]{2 ®H2k fork >1

where &® denotes the Kronecker product and

| +1 +1
a=[ 11 1]
Upto now, only the eigenvalues of the Sylvester
Hadamard matrix H,... are known as

i) 2" eigenvalues are + 21¥*+1)/2
ii) 2* eigenvalues are — 2(6+1)72,
It is interesting to investigate the eigenvalues of
Hadamard matrices other than Sylvester-type [3], [4].
The following definitions and theorems will be
used in Section II
A monomial matrix (sometimes called scaled per-
mutation matrix) has exactly one nonzero entry in ev-
ery row and column,

Definition 1.2: [5] Matrices A and B are said to be
equivalent Hadamard matrices, if B= PA (Q, where
P and @Q are monomial permutation matrices with el-
ements -1 and +1.

Letn € N be a dimension of matrix 4. 4",

A and A7 denote the complex conjugate and trans-

pose, complex conjugate, and transpose of A,
respectively. Further let

=[5 4]

be a standard involutary permutation (sip) matrix,
which has the properties J ' =— J and J7 =— J.

Definition 1.3: (Adjoint) The adjoint of the r X ¢
matrix A is the r X ¢ matrix such that

Let C be the set of complex numbers.
An operator 4 is called self-adjoint or Hermitian if

A= A" and normal if AA" = A" A.
It can be easily seen that for every n x n invertible

Hermitian matrix /,, the formula
[z,y] = (La,y), z,y € C"

determines an indefinite scalar product on C™”.

The L-adjoint A" of A is the unique matrix,
which satisfies [Az,y] = [z, A"ly] forall z,y € C™.
Let A* : C"— C" be the usual adjoint of A (ie.
(z, A'y) = (Az,y) forallz,y € C). It follows that

AYl=rAL
Now, it is natural to describe a matrix as

L-selfadjoint (or selfadjoint with respect to [.,.]) if
A= APl

Proposition 1.4: [6] The set of eigenvalues A (A)
of an L-selfadjoint matrix A, is symmetric relative to
the real axis, ie. Ay € A(A4) implies A, € A (4).
Moreover, in the Jordan normal form of A, the size of

the Jordan blocks with eigenvalue )\, are equal to the

sizes of Jordan blocks with eigenvalue A 0-

In the next section, we will investigate the ei-
genvalues and eigenvectors of the non-Sylvetser
Hadamard matrices, which are particularly equivalent
to the Sylvester Hadamard matrices.
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I . Main Results

Let P, = diag { 1,1,1,-1} be a 4x4 monomial per-
mutation matrix.

In order to construct the non-Sylvester Hadamard
matrices, we define the non- Sylvester Hadamard ma-

tn'foZas

1%;=Eﬂa=[ 5 B }

HS — /S
Then,

is the set of all eigenvalues of the matrix R,

Let
ﬁ2k+l: ﬁ2k®12.

Further, let

Psz

O O O~
ocoNo
Ob~N O O
coo

— 2%

and ﬁ2k+1:-ﬁ8®4k—2 (k => 3)

Then we can define the matrix £ oo+ as follows.

Definition I1.1: For k = 1, we define a class of

non-Sylvester Hadamard matrices as

e
R2k+! = Lgen * Ay = HZkSQk —IIZkSgk ’

Note that the sign of a quarter rows of the matrix
H,.. is changed to yield ﬁ2k+1.

Similarly, we can also define a matrix using £ ...

as follows.

Definition I1.2; For k = 2, we define a matrix as

ﬁ _ p H . E2k E2k
gkt = gk+1 oK+ = E2“g2k EQk%k .
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Remark I1.3; Since P gt and Pz,-ﬂ are both mono-

mial permutation matrices according to Definition 1.2,
the matrices R oo and R Lot are equivalent to the
Sylvetser Hadamard matrix /.. and H,;. for k = 1

and j > 2, respectively.

Definition 11.4: For a given n, the complex num-

bers z which satisfies
=1 (n€eN,)

are called the complex n-th roots of unity. There are n

different n-th roots of unity.

Theorem IL5: Let A (Hy), k = 1, and Ay be the
set of eigenvalues and a eigenvalue of a Sylvester

Hadamard matrix FH.. of order n = 2F*!, respec-
tively.
The spectrum of the matrix R gen for k = 2 can be
expressed as
iy 2612 9k~ times
ii) — 26172 251 times

jif) 2012 4 j ok +1)2 sin%, 2°~2 times
jv) 26— 12 — jok+1)2 sin%, 282 times
vy — 2612 4 ol sin%, 2¢~2 times
vi) — 2k~ 1/2 _ jolkr1)2 sin—g—, 2572 times

where § = /—1.

Proof: We first prove the case i) and ii).
Let v§1) and v§2), 1 < i < 2" be eigenvectors of

k1 k1
the corresponding eigenvalues 2 2 and —2 % of

Hy..., respectively.
It is clear that any linear combinations of 'Ugl) (or

v,(-z)) are also eigenvectors of the corresponding ei-

kil kA1
genvalue2 2 (or-2 ? ).
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Using the elementary column operations for o)

i

or v, 1 < i < 2%, 25+1 x ok !

matrix consisting of 25! eigenvectors given as

[, (1) (1) (2) @2) ... .(2)
V_[vl ), Vg 'y ;U U1 5007 7y Ugk ]
can be modified as
ay; Gy ottt Ay g
Q9,1 Qg 9
V= azk,l
Aoryyp Qoryyp "0 77
0 Gy y o o
0 0 oo e
L 0 0 0 - a2k+l]2k

By choosing the first 251 columns and 2 + 1-st col-
umn through 3 - 2°7'-th columns in (2.13), for

k = 1, we have the 27! x 2* matrix as

31
Qs 1

ay,2
a9

vee a‘l,Q""

a'2k-!—1,1 az*ﬂ,z o
0
0

0
0

where the last 2~ rows are zero.

It is clear that the first 2"~ columns are still ei-
genvectors of the corresponding eigenvalue olk+1)2
and the last 27! columns the corresponding ei-

genvalue — o+ 12 of H,... Thus we have the fol-

lowing relations

T 5 T
X2k+lP2k+1 = _X;k+1,

and
X2{+lﬁzk+l = X2{+lﬁ2k+lﬂ'2k+l
= X;{nszn
= BuXylo,

where

BZk_z d|ag{ )\1, Tty )\21:—1,'_ Al} T, T )\21:—1 }
k+1

k+l k1
=diag{2 ? ,---,2 % -2 %, ..

k+1

From this, we can infer that half-spectrums of the

matrices RZCH and Hy., for k > 1 are the same.

Ay ovpr Gy kg2 Ay i+
g gy . Gy g0
(12k’ ok 1 azk] gkl
Gk q, 9841 Borpp o~ 77 Qoryg gin
0 Ogopggreg ™ :
0 0 e :
0 0 0 nee a2k+1 gkt
O gy Opoeg Oy 3.9
Gy 51

G919 Ay 3 2

Gy, 241 g 2og ‘7'2’°+1,'3-2’°‘l
0
0

0
0

Let A= Hy andMZ[ﬁ __jj| Then

MSZ[ ——ill ﬁ] We obtain
A A A A
. =M M]_ A-A4 A-A] .
= MM [T A A —A—A |
A-A—-A4 A4
A A 4 A
B _[M M}_ A —A A —A
T MS —MS [ A A -4 -4
-4 A A —A
Since
AA = Qk_llék—ll A("‘A) =— 2k—1y and
MM = 2* L, it is easily verified that
H26k+1 = ng+1 = (2k+1 )3[2k+1. (217)
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Equation (2.17) tells us that eigenvalues of B g+t

are complex 6-th roots on the circle, whose radius is
the absolute value of the eigenvalues of the Sylvester
Hadamard matrix. It is known that if X is a complex

eigenvalue of real matrix, then ) is also eigenvalue of

k+1 s
. 2 )
the real matrix. Thus 2 e

0fR2k+l.

are the eigenvalues

Since the trace of B o++1 18 equal to zero, the sum of

all eigenvalues of R p«r1 should be zero. Using the

above properties, the distribution of the eigenvalues
can be derived. A

Corollary I1.6: Let A, be an eigenvalue of the ma-

trix R o+ Which is not an eigenvalue of the Sylvester

Hadamard matrix H, for k = 1. Then, we have
/\2k+1 = /\2k \/5

Theorem IL7: Let A(Hy.:), k=1, and Ay be
the set of eigenvalues and a eigenvalue of a Sylvester
Hadamard matrix H... of order n = 2**', respec-
tively.

Then the spectrum of the matrix R g for k= 2

can be expressed as
k+l
i) 2 2, 2671 times
kil
i) -2 2, 27! times
kil oy k1 m
ii)+2 % e tort2 ? €, 2Ftimes.
Proof: We first prove the cases i) and ii). It is clear
that 2! rows/columns of the matrix 2 o+ have neg-
ative signs compared with the identity matrix. Let V/
be the matrix swapped the fourth 2°~! rows and the
last (eighth) 25=1 of V. Then we can modify the ma-
trix V into V in the form of (2.12) by elementary col-
umn operation. By swapping the fourth 2*~* rows and
the last 25~ of V' and applying the similar method

used in the proof of the previous theorem, we can
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easily prove the cases i) and ii). Similarly to Theorem
11.5, we can derive

Hyio =R = (2" ) L k 2 2. (220)

This implies that the eigenvalues of the matrices

R . for k = 2 are complex 8-th roots on the circle,
whose radius is the absolute value of the eigenvalues
of the Sylvester Hadamard matrix. A

We can also construct various non- Sylvester-
Hadamard matrices using different monomial permu-
tation matrices. For example, we can change the rows
of a quarter or half of the Sylvester-Hadamard
matrices.

The eigenvalues will be created depending on
which rows of the Hadamard matrices are changed. In
case the sign with a quarter of rows is changed, the
same result as that case in Theorem I1.4 is observed.

As the case when the sign with a half of rows is
changed, let us define a new matrix as

Hk Hk
G2k+1=l:_[2{2k Iijk] fork = 0

where H,, is a Hadamard matrix of order 2* and

H, = 1. From (2.21), it follows immediately that

G,

plad - Gz ®H2}.

These matrices G, are also equivalent to the

Sylvester-Hadamard matrices.
Next, let us investigate the eigenvalues and ei-

genvectors of the matrix of G

Theorem I1.8: Let X, be an eigenvector of the ma-

trix A, associated with eigenvalue X n
Further, let A,,; be an eigenvalue of the matrix

Gn+1.Then,
A1 =A, (L+5)or X, (1—5)

and the corresponding eigenvector is

[j& J or [J&XJ
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respectively.

pm¢Lafo=B§ﬂ,mbe c.

Gt =| 7 1 ][]

[emnrha
~af, X, +bH,X,

[m+wm&}

(~a+b)H X,
_ 7 [ (e+b)X,
- A"{(—a%—b))ﬁj'

In order for X, ; to be an eigenvector of G, .,

AR

From (2.27), we can infer that ), = X, (1 5) for
a=1,b=jora=j b=1,respectively. A

~ 0
Let J, =|: I g" } be a Hermitian matrix. Then, it

we have

can be easily confirmed that

~ *
.

Jn : Gn+l jn = Gn+1'

Thus, the matrix G, is a J-selfadjoint matrix, and

according to the proposition 1.4, the spectrum
o (G, ) of a I-selfadjoint matrix G, is symmetric

relative to the real axis, i.e.

A€ J(Gnﬂ)impliesx € d(G,.1).

. Conclusions

We have presented various non-Sylvester Hadamard
matrices and provided their eigenvalues. The equiv-
alent Hadamard matrix constructed by the multi-
plication of the Hadamard matrix and a certain mono-
mial permutation matrix were found to show the inter-
esting similarity with the Hadamard matrix. For exam-
ple, half of the eigenvalues of one of these equivalent
Hadamard matrices were found to be the same as that
of the Sylvester Hadamard matrix. We have shown

that the eigenvaules of this matrix were determined by
the monomial permutaion matrix. We found that the
eigenvalues are determined depending on which rows
of the Hadamard matrices are changed.
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