참고문헌
- Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389- 3402 https://doi.org/10.1093/nar/25.17.3389
- Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. 1990. Current Protocols in Molecular Biology. John Wiely and Sons, New York, NY
- Bertani, L.E. and G. Bertani. 1970. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6, 201-212 https://doi.org/10.1099/0022-1317-6-2-201
- Cho, M.C., D.-O. Kang, B.D. Yoon, and K. Lee. 2000. Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J. Ind. Microbiol. Biotechnol. 25, 163-170 https://doi.org/10.1038/sj.jim.7000048
- Cho, M.C., H.S. Lee, J.H. Kim, Y.K. Choe, J.T. Hong, S.G. Paik, and D.Y. Yoon. 2003. A simple ELISA for screening ligands of peroxisome proliferator-activated receptorgamma. J. Biochem. Mol. Biol. 36, 207-213 https://doi.org/10.5483/BMBRep.2003.36.2.207
- Choi, E.N., M.C. Cho, Y. Kim, C.K. Kim, and K. Lee. 2003. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149, 795-805 https://doi.org/10.1099/mic.0.26046-0
- Dunn, N.W. and I.C. Gunsalus. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114, 974-979
- Eaton, R.W. 1996. p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. J. Bacteriol. 178, 1351-1362 https://doi.org/10.1128/jb.178.5.1351-1362.1996
- Eaton, R.W. 1997. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol. 179, 3171-3180 https://doi.org/10.1128/jb.179.10.3171-3180.1997
- Faizal, I., K. Dozen, C.S. Hong, A. Kuroda, N. Takiguchi, H. Ohtake, K. Takeda, H. Tsunekawa, and J. Kato. 2005. Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J. Ind. Microbiol. Biotechnol. 32, 542-547 https://doi.org/10.1007/s10295-005-0253-y
- Finette, B.A., V. Subramanian, and D.T. Gibson. 1984. Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J. Bacteriol. 160, 1003-1009
- Furukawa, K., J. Hirose, A. Suyama, T. Zaiki, and S. Hayashida. 1993. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol. 175, 5224-5232 https://doi.org/10.1128/jb.175.16.5224-5232.1993
- Gibson, D.T., M. Hensley, H. Yoshioka, and T.J. Mabry. 1970. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6- diene from toluene by Pseudomonas putida. Biochemistry 9, 1626-1630 https://doi.org/10.1021/bi00809a023
- Gibson, D.T., J.R. Koch, and R.E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7, 2653-2662 https://doi.org/10.1021/bi00847a031
- Jeong, J.J., J.H. Kim, C.K. Kim, I. Hwang, and K. Lee. 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265- 3277 https://doi.org/10.1099/mic.0.26628-0
- Johnson, J.L. 1994. Similarity analyses of rRNAs, p. 683-700. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
- Kim, D., J.C. Chae, G.J. Zylstra, H.Y. Sohn, G.S. Kwon, and E. Kim. 2005. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17. J. Microbiol. 43, 49-53
- Kim, J.S., J.H. Kim, E.K. Ryu, J.-K. Kim, C.K. Kim, I. Hwang, and K. Lee. 2004. Versatile catabolic properties of the Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14, 302-311
- Lau, P.C., Y. Wang, A. Patel, D. Labbe, H. Bergeron, R. Brousseau, Y. Konishi, and M. Rawlings. 1997. A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc. Natl. Acad. Sci. USA 94, 1453-1458
- Mosqueda, G. and J.L. Ramos. 2000. A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J. Bacteriol. 182, 937-943 https://doi.org/10.1128/JB.182.4.937-943.2000
- Mosqueda, G., M.I. Ramos-Gonzalez, and J.L. Ramos. 1999. Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232, 69-76 https://doi.org/10.1016/S0378-1119(99)00113-4
- Ngai, K.L., M. Schlomann, H.J. Knackmuss, and L.N. Ornston. 1987. Dienelactone hydrolase from Pseudomonas sp. strain B13. J. Bacteriol. 169, 699-703 https://doi.org/10.1128/jb.169.2.699-703.1987
- Ohta, Y., M. Maeda, and T. Kudo. 2001. Pseudomonas putida CE2010 can degrade biphenyl by a mosaic pathway encoded by the tod operon and cmtE, which are identical to those of P. putida F1 except for a single base difference in the operator-promoter region of the cmt operon. Microbiology 147, 31-41 https://doi.org/10.1099/00221287-147-1-31
- O'Leary, N.D., W.A. Duetz, A.D. Dobson, and K.E. O'Connor. 2002. Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions. FEMS Microbiol. Lett. 208, 263-268 https://doi.org/10.1111/j.1574-6968.2002.tb11092.x
- Phoenix, P., A. Keane, A. Patel, H. Bergeron, S. Ghoshal, and P.C. Lau. 2003. Characterization of a new solventresponsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ. Microbiol. 5, 1309-1327 https://doi.org/10.1111/j.1462-2920.2003.00426.x
- Puskas, L.G., M. Inui, Z. Kele, and H. Yukawa. 2000. Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. DNA Seq. 11, 9-20 https://doi.org/10.3109/10425170009033965
- Ramos-Gonzalez, M.I., M. Olson, A.A. Gatenby, G. Mosqueda, M. Manzanera, M.J. Campos, S. Vichez, and J.L. Ramos. 2002. Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J. Bacteriol. 184, 7062-7067 https://doi.org/10.1128/JB.184.24.7062-7067.2002
- Song, J.S., D.H. Lee, K. Lee, and C.K. Kim. 2004. Genetic organization of the dhlA gene encoding 1,2-dichloroethane dechlorinase from Xanthobacter flavus UE15. J. Microbiol. 42, 188-193
- Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271 https://doi.org/10.1099/00221287-43-2-159
- Staskawicz, B., D. Dahlbeck, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169, 5789-5794 https://doi.org/10.1128/jb.169.12.5789-5794.1987
- Swoboda-colberg, N.G. 1995. Chemical contamination of the environment: sources, types, and fate of synthetic organic chemicals, p. 27-74. In L. Y. Young and C. E. Cerniglia (ed.), Microbial transformation and degradation of toxic organic chemicals. John Wiely and Sons, New York
- Tropel, D. and J.R. van der Meer. 2004. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68, 474-500 https://doi.org/10.1128/MMBR.68.3.474-500.2004
- van der Meer, J.R., W.M. de Vos, S. Harayama, and A.J.B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677-694
- van Hamme, J.D., A. Singh, and O.P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67, 503-549 https://doi.org/10.1128/MMBR.67.4.503-549.2003
- Velazquez, F., V. Parro, and V. de Lorenzo. 2005. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2. Mol. Microbiol. 57, 1557-1569 https://doi.org/10.1111/j.1365-2958.2005.04787.x
- Zylstra, G.J., and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem. 264, 14940-14946
- Zylstra, G.J., W.R. McCombie, D.T. Gibson, and B.A. Finette. 1988. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl. Environ. Microbiol. 54, 1498-1503