Characteristics of Mediated Enzymatic Nitrate Reduction by Gallocyanine-Bound Nanoporous Electrode

  • Kim Seung-Hwan (Interdisciplinary Program for Biochemical Engineering and Biotechnology) ;
  • Song Seung-Hoon (Bio-MAX Institute) ;
  • Yoo Young-Je (Interdisciplinary Program for Biochemical Engineering and Biotechnology, School of Chemical Engineering, Seoul National University)
  • 발행 : 2006.04.01

초록

A gallocyanine-bound nanoporous titanium dioxide electrode system was investigated to carry out a mediated enzyme reaction. Gallocyanine was bound either directly or through an aminopropylsilane linker to the film of nanoporous titanium dioxide and used as a mediator for nitrate reductase in the mediated enzymatic nitrate reduction. The electrode with the aminopropylsilane linker showed 20% higher efficiency of electron transfer at the same potential than that directly linked. The prepared electrodes showed $0.26{\mu}mol/h$ nitrate reduction at a $100mm^2$ surface of the electrode, and linear current response on nitrate ion concentration up to 1.0 mM, which is very useful as a biosensor of nitrate ion in water.

키워드

참고문헌

  1. Ferreyra, N. F., S. A. Dassie, and V. M. Solis. 2000. Electroreduction of methyl viologen in the presence of nitrite. Its influence on enzymatic electrodes. J. Electroanal. Chem. 486: 126-132 https://doi.org/10.1016/S0022-0728(00)00127-3
  2. Kirstein, D., L. Kirstein, F. Scheller, H. Borcherding, J. Ronnenberg, S. Diekmann, and P. Steinru. 1999. Amperometric biosensors on the basis of Pseudomonas stustzeri nitrate reductase. J. Electroanal. Chem. 474: 43-51 https://doi.org/10.1016/S0022-0728(99)00302-2
  3. Meller, R. B., J. Ronnenberg, W. H. Campbell, and S. Diekmann. 1992. Production of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719 https://doi.org/10.1038/355717a0
  4. Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel. 1993. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyl- 4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers on nanocrystalline $TiO_2$ electrodes. J. Am. Chem. Soc. 115: 6382-6390 https://doi.org/10.1021/ja00067a063
  5. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  6. Phillippot, L. and O. Hokberg. 1999. Dissimilatory nitrate reductase in bacteria. Biochim. Biophys. Acta 1446: 1-23 https://doi.org/10.1016/S0167-4781(99)00072-X
  7. Regan, B. O. and M. Gratzel. 1991. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal $TiO_2$ films. Nature 353: 737-740 https://doi.org/10.1038/353737a0
  8. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbial. Biotechnol. 13: 473-476
  9. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2002. Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioprocess Eng. 7: 352-356 https://doi.org/10.1007/BF02933520
  10. Sung, D. W., S. H. Song, J. H. Kim, and Y. J. Yoo. 2002. Effect of electron donors on nitrate removal by nitrate and nitrite reductases. Biotechnol. Bioprocess Eng. 7: 112-116 https://doi.org/10.1007/BF02935889
  11. Zayats, M., A. B. Kharitonov, E. Katz, A. F. Buckmann, and I. Willner. 2000. Biosens. Bioelectr. 15: 671-680 https://doi.org/10.1016/S0956-5663(00)00120-2