Abstract
This paper describes a analysis on the chip thickness model required for cutting force simulation in ball-end milling. In milling, cutting forces are obtained by multiplying chip area to specific cutting forces in each cutting instance. Specific cutting forces are one of the important factors for cutting force predication and have unique value according to workpiece materials. Chip area in two dimensional cutting is simply calculated using depth of cut and feed, but not simply obtained in three dimensional cutting such as milling due to complex cutting mechanics. In ball-end milling, machining is almost performed in the ball part of the cutter and tool radius is varied along contact point of the cutter and workpiece. In result, the cutting speed and the effective helix angle are changed according to length from the tool tip. In this study, for chip thickness model analysis, tool and chip geometry are analyzed and then the definition of chip thickness and estimation method are described. The resulted of analysis are verified by compared with geometrical simulation and other research. The proposed chip thickness model is more precise.