A Study on the Predictive Modeling of Material Removal and Surface Roughness in Powder Blasting of Glass by Design of Experiments

파우더 블라스팅에 의한 유리가공시 실험계획법에 의한 재료 제거량 및 표면 거칠기 예측모델에 관한 연구

  • 김권흡 (인천대학교 산업공학과 대학원) ;
  • 성은제 (인천대학교 기계공학과 대학원) ;
  • 한진용 (인천대학교 기계공학과 대학원) ;
  • 유우식 (인천대학교 산업공학과) ;
  • 박동삼 (인천대학교 기계공학과)
  • Published : 2006.04.01

Abstract

The old technique of sandblasting which has been used for paint or scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. In this paper, we studied on the predictive modeling of material removal and surface roughness in powder blasting of glass by design of experiments. The surface characteristics and surface shape of powder blasted glass surface were tested under different blasting parameter. Finally, we proposed a predictive model for powder blasting process, and compared with experimental results.

Keywords

References

  1. Marshall, D. B., Lawn, B. R. and Evans, A. G., 1982, 'Elastic/Plastic indentation damage in ceramics: the lateral crack system,' J. Am. Ceram. Soc. 65, pp. 561-566 https://doi.org/10.1111/j.1151-2916.1982.tb10782.x
  2. Slikkerveer, P. J., Bouten, P. C. P. and de Haas, F. C. M., 2000, 'High quality mechanical etching of brittle materials by powder blasting,' Sensors and Actuators 85, pp. 296-303 https://doi.org/10.1016/S0924-4247(00)00343-5
  3. Wensink, H., Berenschot, J. W., Jansen, H. V. and Elwenspoek, M. C., 2000, 'High Resolution Powder Blast Micromachining,' Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 769-774
  4. Lighthart, H. J., Slikkerveer, P. J., In't Veld, F. H., Swinkels, P. H. W. and Zonneveld, M. H., 1996, 'Glass and Glass Machining in Zeus Panels,' Philips J. Res., Vol. 50, No.3/4, pp. 475-499 https://doi.org/10.1016/S0165-5817(97)84687-6
  5. Cho, M. W., Cho, W. S., Park, D. S., Lee, J. H., Lee, E. S., Seo, T. I. and Kim, D. W., 2005, 'Application of Powder Blasting Techniques to Micro-Pattern Making Process for Si3N4-hBN Composites,' Key Engineering Materials, Vol. 287, pp. 51-56 https://doi.org/10.4028/www.scientific.net/KEM.287.51
  6. Box, G. E. P. and Wilson, K. B., 1951, 'On the Experimental Attainment of Optimum Conditions', Journal of Royal Statistical Society, Series B13, pp. 1-45
  7. Jain, R. K. and Jain, V. K., 2000, 'Optimum Selection of Machining Conditions in Abrasive Flow Machining using Neural Network,' J. Mat. Pro. Tec., Vol. 108, pp. 62-67 https://doi.org/10.1016/S0924-0136(00)00621-X
  8. Dabnum, M. A. and JHashmi, M. S., 2005, 'Surface Roughness Prediction Model by Design of Experiments for Turning Machinable Glass- ceramics,' J. Mat. Pro. Tech., 164-165, pp. 1289-1293
  9. Jain, V. K. and Adsul, S. G., 2000, 'Experimental Investigation into Abrasive Flow Machining,' Int. J. Machine Tool & Manufacture, Vol. 40, pp. 1003-1021 https://doi.org/10.1016/S0890-6955(99)00114-5
  10. Jain, R. K., Jain, V. K. and Kalra, P. K., 1999, 'Modelling of Abrasive Flow Machining Process : A Neural Network Approach,' Wear, Vol. 231, pp. 242-248 https://doi.org/10.1016/S0043-1648(99)00129-5
  11. Park, S. H., 2003, Modern Design of Experiments, Minyongsa