DOI QR코드

DOI QR Code

An Efficient Design Technique for the Flattened Transfer Function of Arrayed Waveguide Grating

  • Jung Jae-Hoon (School of Electrical, Electronics and Computer Engineering, Dankook University) ;
  • Moon Hyung-Myung (Photonics Planar Integration technology Inc) ;
  • Kwak Seung-Chan (Photonics Planar Integration technology Inc)
  • Received : 2005.12.08
  • Published : 2006.03.01

Abstract

This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. The optimized transfer function will considerably improve the system performance.

Keywords

References

  1. B. Glance, I. P. Kaminow, and R. W. Wilson, 'Applications of the integrated waveguide grating router,' J. Lightwave Technol.., vol. 12, pp. 957-961, 1994 https://doi.org/10.1109/50.296184
  2. Y. Tachikawa, Y. Inoue, M. Kawachi, H. Takahashi, and K. Inoue, 'Arrayed-waveguide grating add-drop multiplexer with loop-back optical paths,'Electron Lett., vol. 29, pp. 2133-2134, 1993 https://doi.org/10.1049/el:19931426
  3. M. R. Amersfoort, C. R. de Boer, F. P. G. M. van Ham, M. K. Smit, P. Demeester, J. J. G. M. van der Tol, and A. Kuntze, 'Phased-array wavelength demultiplexer with flattened wavelength response,' Electron. Lett., vol. 30, no. 4, pp. 300-302, 1994 https://doi.org/10.1049/el:19940249
  4. Y. P. Ho, H. Li, and Y. J. Chen, 'Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,' IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 342-344, 1997 https://doi.org/10.1109/68.556067
  5. A. Rigny, A. Bruno, and H. Sik, 'Multigrating method for flattened spectral response wavelength multi/demultiplexer,' Electron. Lett., vol. 33, no. 20, pp. 1701-1702, 1997 https://doi.org/10.1049/el:19971146
  6. J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, and I. Adesida, 'Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,' IEEE Photon. Technol. Lett., vol. 8, no. 10, pp. 1340-1342, 1996 https://doi.org/10.1109/68.536648
  7. M. C. Parker and S. D. Walker, 'Design of arrayed waveguide gratings using hybrid Fourier-Fresnel transform techniques,' IEEE J. Select. Areas Quantum. Electron., vol. 5, pp. 1379-1384, Sept./Oct. 1999 https://doi.org/10.1109/2944.806764
  8. M. C. Parker and S. D. Walker, 'Arrayed waveguide gratings, fiber Bragg gratings, and photonic crystals : an isomorphic Fourier transform light propagation analysis,' IEEE J. Select. Topics Quantum. Electron., vol. 8, pp. 1158-1167, Nov./Dec. 2002 https://doi.org/10.1109/JSTQE.2002.805981
  9. D. B. Fogel, Evolutionary Computation. New York :IEEE Press, 1995
  10. K. Press et al., 'FEM & Evolution Strategies in the optimal design of electromagnetic devices,' IEEE Trans. Magn., vol. 26, pp. 2181-2183, Sept. 2000 https://doi.org/10.1109/20.104661