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This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG)
with flattened transfer function. The objective function is the norm of the difference between calcul-
ated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction
formula was employed and the design variable was optical path difference of each array waveguide.
The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division muli-
plexing (CWDM) AWG as the optimization tool. The optimized transfer function will considerably

improve the system performance.
OCIS codes : 050.2770, 070.2580

1. INTRODUCTION

Integrated multiple wavelength filters are being
developed for coarse wavelength-division multiplexing
(CWDM) telecommunications and computer networks.
In particular, arrayed-waveguide gratings (AWGs) have
already proven to be critical components for many app-
lications for passive and active routing of optical net-
works [1,2]. In order to allow the concatenation of many
such devices and relax requirements on accurate wave-
length control in a network, their spectral response must
necessarily be accurately designed. Many techniques that
have been introduced in order to design the spectral
response of an AWG have been aimed at achieving a
broadened or flattened transfer function by use of multi-
mode output waveguides [3], two cascaded grating devices
[4], multiple gratings [5], or a multimode interference
coupler [6]. Some design methods using an analytic form
of objective function have also been proposed [7, 8].
However, these techniques are sequential, that is, phy-
sical parameters are determined according to a fixed
order one by one or assume a particular mode profile
to simplify the problem. Thus, they might be applicable
to designing desirable devices in a one-valued optimi-
zation method or to those having an particular input
or propagating mode profile.

In this paper, an efficient optimal design method for

an arrayed waveguide grating (AWG) with flattened
transfer function. is presented. The spectral response of
AWG was computed by using the Fresnel-Kirchhof diffrac-
tion formula. The 1, 3, and 20-dB bandwidths were
obtained from the transmission spectrum. The (141)
Evolution Strategy was employed as the optimization
tool. The optimization method presented here is applied
to a design of 8-channel CWDM AWG. The design
results show that the optimization method presented
here is very useful in designing the AWG spectrum and
developing some new type of AWG. This algorithm can
be extended to another objective function with other
weighting factors and optical parameters.

. SPECTRAL ANALYSIS OF AWG

The Fresnel-Kirchhoff diffraction theory that was
applied to an AWG to obtain the transfer function
by Parker [8] was employed for the calculation of the
spectrum of AWG in this paper. The transfer function
for an AWG device is calculated by the following equation :

H(§) =— CE)/.OO {a(m)erp(z)}eﬁ”dx (1)

Co is the normalization factor, (®)(z) is the grating
phase, the detuning parameter (§)=(8-Bg)cos¥, with
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FIG. 1. Schematic configuration of AWG and design
varables.

propagation constant f=2rn/X, and Bp corresponding
with the wavelength Ap at the bandpass center of the
AWG filter response. a(x) is the variation of electric
field amplitude across the waveguide array, and cos?
denotes the direction cosine of the propagation constant
in the second slab waveguide.

The phase at the ith array waveguide &(z;) can be
expressed as follows:

@@)ngML

; 3 min T AL+ AL)

Ly is the shortest length of array waveguide, AL is
the conventional optical path difference and A L; is an
additional optical path difference at the ith array
waveguide. In this paper, we chose A L; at each array
waveguide as design variables as shown in Fig. 1. The
variation in optical path difference at each array wave-
guide changes the shape of transfer function to obtain
the optimal spectrum shape.

III. OPTIMIZATION OF AWG USING (1+1)
EVOLUTION STRATEGY

1. (141) Evolution Strategy

In this paper, (1+1) ES is employed as a main opti-
mization tool. Among several stochastic methods, ES
uses the principle of organic evolution for searching for
the optimal values. The ES is widely used because it
can find the global optimal solution, the algorithm is
simple, and convergence speed is fast. The algorithm
roughly consists of four parts : reproduction, mutation,
competition, and selection [9,10].

The (14+1) ES is a simple mutation-selection scheme
called two membered ES. The “population” consists of
one parent only, determined by a certain parameter con-
figuration, creating one descendant by means of adding
a normally distributed random vector (mutation) to
the parameter values. The ‘fitter’ of both individuals,
obtained by evaluating the objective function, serves as
the ancestor of the following iteration (selection). The
step width is adjusted periodically (e.g. after 10*np
function calls, where np is the number of optimization

parameters) in such a way that the ratio of successful
mutations over all mutations becomes p. This strategy
parameter is usually set to p=0.2. In this paper, an
annealing factor is set to be 0.85 and a shaking process
is also considered to prevent a solution from converging
to a local minimum.

2. Objective Function

In this paper, the objective function of the optimal
design of AWG was chosen the norm of difference bet-
ween the calculated and target (rectangular shape)
spectrum. The optimization problem and the objective
function are defined as follows :

N
Minimize Objective Function:HZGLﬂcl2 (2)
ic1

where xi is the difference between calculated trans-
mission and target value at the ith analysis point, as

shown in Fig. 2, N is the number of analysis points and
N

@ is a weighting factor with »,a?=1.
i=1
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FIG. 2. Comparison between the calculated and target
spectrum.
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FIG. 3. Optimization procedure for AWG using (1+1)
Evolution Strategy
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3. Optimization Procedure

Fig. 3 shows the flow chart for the optimization pro-
cedure. The optical transmissions are calculated by the
Fresnel-Kirchhoff diffraction theory [8]. Then, the objec-
tive function is computed by (2). If the objective function
is smaller than the specified value, or the relative error
between present and previous optimization step is smaller
than the predefined tolerance, then the optimization
process is terminated.

IV. OPTIMIZATION RESULTS AND DISCUSSIONS

The optimization method presented here was applied
to the design of a 8-channel AWG.. The waveguide was
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FIG. 4. Convergence of objective function with iteration.
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FIG. 6. (a) The initial and final spectra (log scale), (b) The enlarged initial and final spectra (log scale).

Table 1. Optimization results.

assumed a silica-based one. Fig. 4 shows the convergent
objective function. The objective function decreased with
iteration and after 35th iteration remained constant.
Therefore the value converged to a point and the
design was optimally designed.

Fig. 5 shows the transmission spectrum at the target
and those at the initial and final state. Fig. 5 shows
the target rectangular function, the transmission spectrum
at the initial and final state. This shows that the shape
of transmission was improved and its upper region gets
broader to approach the target shape.

Fig. 6 (a) and (b) show the transmission spectrum
at the target and those at the initial and final state
and an enlarged spectrum in log scale. Table 1 summa-
rizes the 1, 3, 20 dB bandwidths at the target and
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FIG. 5. Target, initial and final spectra (linear scale).
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Parameters Initial Final Change
1dB bandwidth [GHz] 586.6 723.8 +23.4%
3dB bandwidth [GHz] 1002.2 1186.9 +18.4%
20dB bandwidth [GHz] 2548.6 2709.5 +6.3%
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those at the initial and final state. The figures and
table show that the 1-, 3-, 20-dB bandwidths get larger
and the increments in upper region of transfer function
are more than those in lower so, approach the target
shape. -

By changing the weighting factors, ‘the importance’
of the physical parameters can be further emphasized.
One may enhance ‘the importance’ of some physical
parameters by increasing their weighting factors and
hence, improving the nearness from the target value.
Furthermore, there are no limitations or requirements
in choice of design parameters and design variables

V. CONCLUSION

This paper presents the systematic optimum design
method of AWG to obtain desired transmission spectra.
The frequency response of AWG is calculated by the
Fresnel-Kirchhoff diffraction theory and from their
transmission was obtained. The (141) ES is employed as
an optimization tool. The optimization method presented
here is applied to the design of an 8-channel AWG with
the rectangular target transfer function. The design
results show that the optimization method presented
here is very useful in designing AWG spectrum and deve-
loping some new type of AWG. This algorithm can be
extended to another objective function with other weighting
factors and optical parameters.
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