Isolation and Purification of Antimicrobial Substance from the Giant Snail, Achatina fulica

식용 달팽이 [Achatina fulica]로부터 항균성 물질의 분리 및 정제

  • Kim In-Hae (Department of Pharmaceutical Engineering, College of Engineering, Silla University) ;
  • Hyun Jin-Won (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • Lee Jae-Hwa (Department of Pharmaceutical Engineering, College of Engineering, Silla University)
  • 김인혜 (신라대학교 공과대학 제약공학과) ;
  • 현진원 (제주대학교 의과대학) ;
  • 이재화 (신라대학교 공과대학 제약공학과)
  • Published : 2006.03.01

Abstract

An antimicrobial substance was purified from the giant snail body extract (Achatina fulica) using solid-phase extraction and separation on HPLC reversed-phase chromatography. The primary structure were determined by a combination of an automated amino acid sequence and MALDI-TOF Mass. Its molecular mass was found to be 1392.64 Da. This result was in excellent agrement with the theoretical molecular mass calculated from the amino acid sequence. purified peptide showed antimicrobial activity in vitro against Escherichia coli D31. This result indicate that giant snail whole body was potentially antimicrobial.

식용 달팽이 (Achatina fulica])의 추출물 RM 60을 사용하여 E. coli D31을 대상으로 순수한 항균성 물질을 분리 정제하였다. 정제한 항균성 물질은 MALDI-TOF Mass spectrometra를 사용하여 분자량을 측정한 결과, 1392.64 Da 단일 peak를 얻을 수 있었으며, 이 후 Edman 분해법을 이용한 peptide sequencer를 사용하여 일차구조 분석을 조사하고 있다.

Keywords

References

  1. Barra, D. and Simmaco, M. (1995) Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol., 13, 205-209 https://doi.org/10.1016/S0167-7799(00)88947-7
  2. Hancock, R.E.W. and Diamond, G. (2000) The role of cationic antimicrobial peptides in innate host defense. Trends Microbial. 8. 402-410 https://doi.org/10.1016/S0966-842X(00)01823-0
  3. Hancock, R.E.W. and Scott, M.G. (2000) The role of antimicrobial peptides in animal defences. Proc. Natl. Acad. Sci. USA. 97. 8856-8861
  4. Lehrer, R.I. and Ganz, T. (1990) Antimicrobial polypeptides of human neutrophils. Blood 76, 2169-2181
  5. Lehrer, R.I., Lichtenstein, A.K. and Ganz, T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105-128 https://doi.org/10.1146/annurev.iy.11.040193.000541
  6. Lehrer, R.I., Rosenman, M. Harwig, S.S.L. Jackson R. and Eisenhauer, P. (1991) Ultra-sensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods, 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
  7. Park, C.B., Kim, M.S. and Kim, S.C. (1996) A novel antimicrobial peptide from Bufo, Bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408-413 https://doi.org/10.1006/bbrc.1996.0071
  8. Park, N.G., Yamato, Y., Lee, S.M., Sugihara, G., Park, J.-S. and Kang, S.-W. (1996) The interaction of mastoparan B from venom of hornet Vespa basalis with phospholipid matrices. Bull. Korean Chem. Soc. 17, 50-56
  9. Storici, P. and Zanetti, M. (1993) A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptides PR-39. Biochem. Biophys. Res. Commun. 196, 1058-1065 https://doi.org/10.1006/bbrc.1993.2358
  10. Vizioli, J. and Salzet, M. (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci., 23(11). 494-496 https://doi.org/10.1016/S0165-6147(02)02105-3
  11. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature, 415, 389-395 https://doi.org/10.1038/415389a