DOI QR코드

DOI QR Code

Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels

  • Strauss, Alfred (Department of Civil Engineering + Natural Hazards, Institute for Structural Engineering, University of Natural Resources and Applied Life Sciences) ;
  • Mordini, Andrea (Department of Civil Engineering, University of Parma) ;
  • Bergmeister, Konrad (Department of Civil Engineering + Natural Hazards, Institute for Structural Engineering, University of Natural Resources and Applied Life Sciences)
  • 투고 : 2005.11.28
  • 심사 : 2006.05.23
  • 발행 : 2006.04.01

초록

Reinforced concrete corbels are structural elements widely used in practical engineering. The complex response of these elements is described in design codes in a simplified manner. These formulations are not sufficient to show the real behavior, which, however, is an essential prerequisite for the manufacturing of numerous elements. Therefore, a deterministic and probabilistic study has been performed, which is described in this contribution. Real complex structures have been modeled by means of the finite element method supported primarily by experimental works. The main objective of this study was the detection of uncertainties effects and safety margins not captured by traditional codes. This aim could be fulfilled by statistical considerations applied to the investigated structures. The probabilistic study is based on advanced Monte Carlo simulation techniques and sophisticated nonlinear finite element formulations.

키워드

참고문헌

  1. ACI Committee 544 (1988), 'Design considerations for steel fiber reinforced concrete (ACI 544.4R-88)', Manual of Concrete Practice, Part 5, American Concrete Institute, Detroit, MI, 563-590
  2. Ali, M. A. and White, R. N. (2001), 'Consideration of compression stress bulging and strut degradation in truss modeling of ductile and brittle corbels', Eng. Struct., 23(3), March, 240-249 https://doi.org/10.1016/S0141-0296(00)00040-7
  3. Bergmeister, K., Strauss, A., Eichinger, E. M., Kolleger, J., Novak, D., Pukl, R., Cervenka, V. (2002), 'Structural analysis and safety assessment of existing concrete structures', The First Fib Congress, Osaka, Japan
  4. CEB, (1993). Comite Euro-Intemational du Beton, CEB - FIP Model Code 90, Bulletin d'Information No. 213/214, 1993
  5. CEN (1998), EN1992 Eurocode 2: Design of concrete structures
  6. Cervenka, J., Cervenka, V., Eligehausen, R. (1998), 'Fracture-plastic material model for concrete, application to analysis of powder actuated anchors', Proc. FRAMCOS 3, 1107-1116
  7. Cervenka, V. (1985), 'Constitutive model for cracked reinforced concrete', J. ACI, Proc. 82, Nov-Dec., No. 6, 877-882
  8. Cervenka, V. (2000), 'Simulating a response' Conc. Eng. Int., 4(4), 45-49
  9. Cervenka, V. (2002), 'Computer simulation of failure of concrete structures for practice', The First Fib Congress, Osaka, Japan, Session 13, 289-304
  10. Crisfield, M.A. (1983), 'An arc-length method induding line search and accelerations', Int. J. Num. Meth. in Eng., 19, 1269-1289 https://doi.org/10.1002/nme.1620190902
  11. Fattuhi, N.I. (1990), 'Strength of SFRC corbels subjected to vertical load', J. Struct. Eng. ASCE, 116(3)
  12. Holnicki-Szulc, J. and Gierlinski, J. T. (1997), 'Structural analysis, design and control by the Virtual Distortion Method', Eng. Struct., 19(4), April 1997, 335-336 https://doi.org/10.1016/S0141-0296(97)83363-9
  13. JCSS (2000), Probabilistic Model Code, 12th Draft, Joint Committee of Structural Safety
  14. Kriz, L. B. and Raths, C. H. (1965), 'Connections in precast concrete structures - strength of corbels', PCI J., 10(1), February 1965
  15. Kupfer, H., Hilsdorf, H. K., Rusch, H., (1969), 'Behavior of concrete under biaxial stresses', ACI J., Proceedings, 66(8), Aug, 656-666
  16. Menetrey, P. and Willam, K. J. (1995). 'Triaxial failure criterion for concrete and its generalization', ACI Struct. J., 92(3), May-June 311-317
  17. Mordini, A. and Strauss, A. (2005), 'Deterministic and probabilistic finite element analysis of reinforced concrete corbels', Internal Report of Institute of Structural Engineering, University of Natural Resources and Applied Life Sciences, Vienna, March 2005
  18. Novak, D., Vorechovsky, M., Rusina, R. (2003), 'Small-sample probabilistic assessment - software FREET', ICASP 9, 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, USA, July 6-9, 91-96
  19. Pukl, R., Cervenka, V., Strauss, A., Bergmeister, K., Novak, D. (2003), 'An advanced engineering software for probabilistic-based assessment of concrete structures using nonlinear fracture mechanics', Applications of Statistics and Probability in Civil Engineering, Der Kiureghian, Madanat & Pestana (eds.), Millpress, Rotterdam
  20. Pukl, R., Novak, D., Bergmeister, K. (2003), 'Reliability assessment of concrete structures', Computational Modeling of Concrete Structures: Euro-C 2003, March 17-20, 2003, St. Johann im Pongau, Austria, 817-825
  21. Spaethe, G. (1992), Die Sicherheit Tragender Baukonstruktionen, Springer-Verlag, Wien, New York
  22. Strauss, A., Bergmeister, K., Santa, U., Pukl, R., Cervenka, V., Novak, D. (2003), 'Non destructive reliability analysis of concrete structures numerical concepts and material models for existing concrete structures', Deutsche Gesellschaft fur Zerstorungsfreie Prufung: International Symposium (NDT-CE 2003) Non-Destructive Testing in Civil Engineering 2003, Berlin, September 16-19, 2003
  23. Vorechovsky, M. and Novak, D. (2003), 'Statistical correlation in stratified sampling', ICASP 9, 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, USA, July 6-9, 119-124

피인용 문헌

  1. Zyklisch belastete Betonstrukturen vol.89, pp.11, 2012, https://doi.org/10.1002/bate.201200044
  2. Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.259
  3. Tragkapazität schlanker Druckglieder vol.110, pp.12, 2015, https://doi.org/10.1002/best.201500040
  4. Behavior of reinforced concrete corbels vol.33, pp.3, 2009, https://doi.org/10.12989/sem.2009.33.3.357
  5. A case study on correlations of axial shortening and deflection with concrete creep asymptote in segmentally-erected prestressed box girders vol.11, pp.12, 2015, https://doi.org/10.1080/15732479.2014.992442
  6. Monitoring-based performance assessment of rail-bridge interaction based on structural reliability vol.16, pp.3, 2015, https://doi.org/10.1002/suco.201500019
  7. Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.279
  8. Reliability-based modeling of punching shear capacity of FRP-reinforced two-way slabs vol.17, pp.1, 2016, https://doi.org/10.12989/cac.2016.17.1.087
  9. FE analysis of reinforced concrete corbels with enhanced continuum models vol.47, pp.9, 2011, https://doi.org/10.1016/j.finel.2011.03.022
  10. Experimentelle Untersuchung von ermüdungsbeanspruchten Betonstrukturen zur Feststellung des realen Schädigungsgrades vol.107, pp.7, 2012, https://doi.org/10.1002/best.201200016
  11. Numerical analysis of reinforced high strength concrete corbels vol.74, 2014, https://doi.org/10.1016/j.engstruct.2014.05.014
  12. Nonlinear FE analysis of slab-beam-column connection in precast concrete structures vol.143, 2017, https://doi.org/10.1016/j.engstruct.2017.04.028
  13. Finite element and design code assessment of reinforced concrete haunched beams vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.423
  14. Safety analysis and reliability assessment of engineering structures - The success story of SARA vol.3, pp.2, 2019, https://doi.org/10.1002/cepa.986