DOI QR코드

DOI QR Code

Influence of the non-linearity of the aerodynamic coefficients on the skewness of the buffeting drag force

  • Denoel, Vincent (Department of Material Mechanics and Structures, University of Liege) ;
  • Degee, Herve (Department of Material Mechanics and Structures, University of Liege)
  • Received : 2005.08.25
  • Accepted : 2006.10.10
  • Published : 2006.12.25

Abstract

This paper is devoted to the non linear quasi-steady aerodynamic loading. A linear approximation is often used to compute the response of structures to buffeting forces. Some researchers have however shown that it is possible to account for the non linearity of this loading. This non linearity can come (i) from the squared velocity or (ii) from the shape of the aerodynamic coefficients (as functions of the wind angle of attack). In this paper, it is shown that this second origin can have significant implications on the design of the structure, particularly when the non linearity of the aerodynamic coefficient is important or when the transverse turbulence is important.

Keywords

References

  1. Benfratello, S., Falsone, G., and Muscolino, G. (1996), 'Influence of the quadratic term in the along wind stochastic response of SDOF structures', Eng. Struct., 18, 685-695 https://doi.org/10.1016/0141-0296(95)00222-7
  2. Chen, X. and Kareem, A. (2002), 'Advances in modelling of aerodynamic forces on bridge decks', J. Eng. Mech., 128(11), 1193-1250 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1193)
  3. Clough, R. W. and Penzien J. (1993), Dynamics of Structures, McGraw-Hill: Civil Engineering series (second edition)
  4. Cremona, C. and Foucriat, J. C. (2002), Comportement au vent des ponts, Presses de l'Ecole Nationale des Ponts et Chaussees, Paris (in french)
  5. Davenport, A. G. (1962), 'The response of slender line-like structures to a gusty wind', Proceedings of the Institute of Civil Engineers, 23, 389-408
  6. Denoel, V. (2005), 'Application des methodes d'analyse stochastique a l'etude des effets du vent sur les structures du genie civil', PhD thesis, University of Liege, Belgium (in french)
  7. Di Paola, M. and Muscolino, G. (1990), 'Differential moment equations for FE modelled structures with geometrical non-linearities', Int. J. Non Linear Mech., 25(4), 363-373 https://doi.org/10.1016/0020-7462(90)90025-5
  8. Floris, C. and Valloni (2002), 'Non Gaussian response to random wind pressures: A comparison of different approaches', Eur. Conference on Struct. Dynamics, Eurodyn 2002, Munich (pp. 773-778)
  9. Grigoriu, M. (1986), 'Response of linear systems to quadratic gaussian excitation', J. Eng. Mech., ASCE, 112(6), 729-744 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:8(729)
  10. Gurley, K., Tognarelli, A., and Kareem, A. (1997) 'Analysis and simulation tools for wind engineering', Probabilistic Eng. Mech., 12(1), 9-31 https://doi.org/10.1016/S0266-8920(96)00010-0
  11. GuselIa, V. and Materazzi, A. L. (2000), 'Non Gaussian along wind response analysis in time and frequency', Eng. Struct., 22, 49-57 https://doi.org/10.1016/S0141-0296(98)00074-1
  12. Kareem, A., TognarelIi, A., and Gurley, K. R. (1998), 'Modeling and analysis of quadratic term in the wind effects on structures', J. Wind Eng. Ind. Aerodyn., 74, 1101-1010 https://doi.org/10.1016/S0167-6105(98)00101-9
  13. Lutes, L. D. and Hu, S. L. (1986), 'Non normal stochastic response of linear systems', J. Eng. Mech., ASCE, 112, 127-141 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:2(127)
  14. Muscolino, G. (1995), 'Linear systems excited by polynomial forms of non-Gaussian filtered processes', Probabilistic Eng. Mech., 10, 35-44 https://doi.org/10.1016/0266-8920(94)00006-7
  15. Simiu, E. (1974), 'Wind spectra and dynamic alongwind response', J. Struct. Div. ASCE, 100, 1897-1910
  16. Simiu, E. and Scanlan, R. H. (1978), Wind Effects on Structures, John Wiley & Sons. First Edition
  17. Soize, C. (1978), 'Gust loading factors with non linear pressure terms', J. Struct. Div., ASCE, 104(6), 991-1007
  18. Spanos, P. D. (1983), 'Spectral moments calculation of linear system output', J. Appl. Mech., ASME, 50, 901-903 https://doi.org/10.1115/1.3167169

Cited by

  1. On the background and biresonant components of the random response of single degree-of-freedom systems under non-Gaussian random loading vol.33, pp.8, 2011, https://doi.org/10.1016/j.engstruct.2011.04.003
  2. Limit analysis of the statistics of quasi-steady non-linear aerodynamic forces for small turbulence intensities vol.24, pp.4, 2009, https://doi.org/10.1016/j.probengmech.2009.04.001
  3. Polynomial approximation of aerodynamic coefficients based on the statistical description of the wind incidence vol.24, pp.2, 2009, https://doi.org/10.1016/j.probengmech.2008.05.002
  4. Wind-induced effects on bluff bodies in turbulent flows: Nonstationary, non-Gaussian and nonlinear features vol.122, 2013, https://doi.org/10.1016/j.jweia.2013.06.002