DOI QR코드

DOI QR Code

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q. (Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology) ;
  • Howson, W.P. (Cardiff School of Engineering, Cardiff University) ;
  • Watson, A. (Department of Aeronautical and Automotive Engineering, Loughborough University) ;
  • Lin, J.H. (Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology)
  • Received : 2005.05.30
  • Accepted : 2006.05.03
  • Published : 2006.09.30

Abstract

The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.

Keywords

References

  1. Achenback, J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam
  2. Aki, K. and Richards, P.G. (1980), Quantitative Seismology, W H Freeman and Company, San Francisco, U.S.A
  3. Alshaikh, I.A.B.U., Turhan, D. and Mengi, Y. (2001), 'Two-dimensional transient wave propagation in viscoelastic layered media', J. Sound Vib., 244(5), 837-858 https://doi.org/10.1006/jsvi.2000.3532
  4. Brekhovskikh, L.M. (1980), Waves in Layered Media, Academic Press, New York, U.S.A
  5. Caviglia, G. and Morro, A. (2000a), 'Riccati equations for wave propagation in planarly-stratified solids', European Journal of Mechanics A/Solids, 19, 721-741 https://doi.org/10.1016/S0997-7538(00)00179-0
  6. Caviglia, G. and Morro, A. (2000b), 'Wave propagation in multilayered anisotropic solids', Int. J. Eng. Sci., 38, 847-863 https://doi.org/10.1016/S0020-7225(99)00062-2
  7. Caviglia, G. and Morro, A. (2002), 'Reflection and transmission in anisotropic dissipative multilayers', European Journal of Mechanics A/Solids, 21, 1055-1067 https://doi.org/10.1016/S0997-7538(02)01252-4
  8. Doyle, J.F. (1989), Wave Propagation in Structures, Springer, New York, U.S.A
  9. Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, McGraw-Hill, New York, U.S.A
  10. Graff, K.F. (1975), Wave Motion in Elastic Solids, Clarendon Press, Oxford, U.K
  11. Gulyayev, V.I., Lugovyy, P.Z. and Ivanchenko, G.M. (2003), 'Discontinuous wave front propagation in anisotropic layered media', Int. J. Solids Struct., 40, 237-247 https://doi.org/10.1016/S0020-7683(02)00517-6
  12. Kennett, B.L.N. (1983), Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge, U.K
  13. Khoury, R.A.L., Kasbergen, C., Scarpas, A. and Blaauwendraad, J. (2002a), 'Poroelastic spectral element for wave propagation and parameter identification in multi-layer systems', Int. J. Solids Struct., 39, 4073-4091 https://doi.org/10.1016/S0020-7683(02)00260-3
  14. Khoury, R.A.L., Scarpas, A., Kasbergen, C. and Blaauwendraad, J. (2002b), 'Spectral element technique for efficient parameter identification of layered media. Part III: Viscoelastic aspects', Int. J. Solids Struct., 39, 2189-2201 https://doi.org/10.1016/S0020-7683(02)00079-3
  15. Lin, J.H. (1992), 'A fast CQC algorithm of PSD matrices for random seismic responses', Comput. Struct., 44, 683-687 https://doi.org/10.1016/0045-7949(92)90401-K
  16. Lin, J.H., Fan, Y. and Williams, F.W. (1995a), 'Propagation of non-stationary random waves along substructural chains', J. Vib. Acoustics, 187(4), 585-593
  17. Lin, J.H., Shen, W.P. and Williams, F.W. (1995b), 'A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures', Struct. Eng. Mech., 3(3), 215-228 https://doi.org/10.12989/sem.1995.3.3.215
  18. Lin, J.H., Song, G.Z., Sun, Y. and Williams, F.W. (1995c), 'Non-stationary random seismic response of nonuniform beams', Soil Dyn. Earthq. Eng., 14, 301-30 https://doi.org/10.1016/0267-7261(94)00030-K
  19. Lin, J.H., Sun, D.K., Sun, Y. and Williams, F.W. (1997), 'Structural responses to non-uniformly modulated evolutionary random seismic excitations', Communications Numer. Meth. Eng., 13, 605-616 https://doi.org/10.1002/(SICI)1099-0887(199708)13:8<605::AID-CNM75>3.0.CO;2-I
  20. Lin, J.H., Williams, F.W. and Zhang, W.S. (1993), 'A new approach to multiphase-excitation stochastic seismic response', Microcomputers in Civil Engineering, 8, 283-290
  21. Lin, J.H. and Zhang, Y,H. (2005), Vibration and Shock Handbook, Chapter 30: 'Seismic random vibration of long-span structures', CRC Press, Boca Raton, U.S.A
  22. Lin, J.H., Zhang, W.S. and Williams, F.W. (1994), 'Pseudo-excitation algorithm for nonstationary random seismic responses', Eng. Struct., 16, 270-276 https://doi.org/10.1016/0141-0296(94)90067-1
  23. Mamolis, G.D. (2002), 'Stochastic soil dynamics', Soil Dyn. Earthq. Eng., 22, 3-15 https://doi.org/10.1016/S0267-7261(01)00055-0
  24. Mamolis, G.D. and Shaw, R.P. (1996), 'Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity-I. Fundamental solutions', Soil Dyn. Earthq. Eng., 15, 119-127 https://doi.org/10.1016/0267-7261(95)00023-2
  25. Mamolis, G.D. and Shaw, R.P. (1997), 'Harmonic elastic waves in continuously heterogeneous random layers', Engineering Analysis with Boundary Elements, 19, 181-189 https://doi.org/10.1016/S0955-7997(97)00005-2
  26. Priestley, M.B. (1967), 'Power spectral analysis of nonstationary random processes', J. Sound Vib., 6, 86-97 https://doi.org/10.1016/0022-460X(67)90160-5
  27. Rizzi, S.A. and Doyle, J.F. (1992a), 'Spectral analysis of wave motion in plane solids with boundaries', Trans. ASME Journal of Vibration and Acoustics, 114, 133-140 https://doi.org/10.1115/1.2930241
  28. Rizzi, S.A. and Doyle, J.F. (1992b), 'Spectral element approach to wave motion in layered solids', Trans. ASME Journal of Vibration and Acoustics, 114, 569-577 https://doi.org/10.1115/1.2930300
  29. Thomson, C.J. (1997), 'Modelling surface waves in anisotropic structures I theory', Physics of Earth and Planetary interiors, 103, 195-206 https://doi.org/10.1016/S0031-9201(97)00033-2
  30. Timoshenko, S.P. and Goodier, J.N (1951), Theory of Elasticity, McGraw-Hill, New York, U.S.A
  31. Vashishth, A.K. and Khurana, P. (2002), 'Inhomogeneous waves in anisotropic porous layer overlying solid bedrock', J. Sound Vib., 258(4), 577-594 https://doi.org/10.1006/jsvi.2002.5175
  32. Verma, K.L. (2002), 'On the propagation of waves in layered anisotropic media in generalized thermoelasticity', Int. J. Eng. Sci., 40, 2077-2096 https://doi.org/10.1016/S0020-7225(02)00030-7
  33. Zhang, J.F, and Li, Y.M. (1997), 'Numerical simulation of elastic wave propagation in inhomogeneous media', Wave Motion, 25, 109-125 https://doi.org/10.1016/S0165-2125(96)00022-4
  34. Zhang, R.R. and Lou, M.L. (2001), 'Seismic wave motion modeling with layered 3D random heterogeneous media', Probabilistic Engineering Mechanics, 16, 381-397 https://doi.org/10.1016/S0266-8920(01)00027-3
  35. Zhang, R. and Shinozuka, M. (1996), 'Effects of irregular boundaries in a layered half-space on seismic waves', J. Sound Vib., 195(1), 1-16 https://doi.org/10.1006/jsvi.1996.0400
  36. Zhong, W.X. (1994), 'The method of precise integration of finite strip and wave guide problems', Proc. the Int. Conf. on Computational Methods in Structural and Geotechnical Engineering. Hong Kong, December
  37. Zhong, W.X. (2004), Duality System in Applied Mechanics and Optimal Control, Kluwer Academic Pub., Boston, U.S.A