Improvement of Properties in Solid Polymer Electrolyte Using New Preparation Method

새로운 막 제조 방법에 의한 고분자 전해질막의 특성 향상

  • Kim, Tae-Hee (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Jung-Hun (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • Published : 2006.09.15

Abstract

높은 이온전도도와 충분한 기계적 강도, 전해질 누수가 적은 새로운 형태의 고분자 전해질막(pore-gel SPE)을 연구 개발하였다. 다공성 PVDF-HFP 고분자막의 기공 내에 전해질 용액을 흡수시킨 후 막 내에서 젤화를 진행시켰다. 전해질 용액은 2:2:1의 비를 갖는 PC/EC/DMA에 1M SA(Salicylic acid)를 용해하고 여기에 고분자막을 용해시킬 수 있는 아세톤을 첨가하였다. 초음파를 이용함으로써 고분자막의 용액 흡수율을 증가시키고 또 고분자막에서 젤화를 촉진 시킬 수 있었다. 이렇게 젤화한 막의 이온전도도는 젤화 전 막보다 $1{\sim}2.2$ 배 향상되었고, 인장강도는 gel-type SPE 보다 40 배 증가하였으며, 전해질 누수실험결과 hybrid-type SPE는 13%의 누수를 보였으나 본 연구의 막(pore-gel SPE)은 6%로 감소함을 보였다.

Keywords

References

  1. K. Murata, S. Izuchi and Y. Yoshihisa, 'An overview of the research and development of solid polymer electrolyte batteries', Electrochim. Acta, Vol. 45, 2000, p. 1502
  2. N. K. Chung, Y. D. Kwon and D. Kim, 'Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol) hybrid-type polymer electrolytes', J. Power Sources, Vol. 124, 2003, p. 148 https://doi.org/10.1016/S0378-7753(03)00608-6
  3. H. P. Singh and S. S. Sekhon, 'Non-aqueous proton conducting polymer gel electrolytes', Electrochom. Acta, Vol. 50, 2004, p. 621 https://doi.org/10.1016/j.electacta.2004.02.067
  4. H. P. Singh and S. S. Sekhon, 'Conductivity behavior of proton conducting polymer gel electrolytes with PVDF-HFP', European Polymer Journal, Vol. 39, 2003, p. 94
  5. A. M. Stephan, T. P. Kumar, N. G. Renganathan, S. Pitchumani, R Thirunakaran and N. Muniyandi, 'Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes', J. Power Sources, Vol. 89, 2000, p. 80 https://doi.org/10.1016/S0378-7753(00)00379-7
  6. Q. Shi, M. Yu, X. Zhou, Y. Yan and C. Wan, 'Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries', J. Power Sources, Vol. 103, 2002, p. 288
  7. W. Lintner and D. Hanesian, 'The effect of ultrasonic vibrations on heterogeneous catalysis', Ultrasonics, Vol. 15, 1997, p. 21 https://doi.org/10.1016/0041-624X(77)90008-7
  8. S. Sato, F. Nozaki, S. Zhang and P. Cheng, 'Liquid-phase alkylation of benzene with cyclohexene over $SiO_{2}-grafted$ $AlCl_{3}$ catalyst and accelerating effect of ultrasonic vibration', Applied Catalysis A: General, Vol. 143, 1996, p. 271 https://doi.org/10.1016/0926-860X(96)00097-X
  9. F. Boudin, X. Andrieu, C. Jehoulet and I. I. Olsen, 'Microporous PVdF gel for lithium-ionbatteries', J. Power Sources, Vol. 81/82, 1999, p. 805
  10. A. M. Christie, L. Cristie and C. A. Vincent, 'Selection of new Kynar-based electrolytes for lithium-ion batteries', J. Power Sources, Vol. 74, 1998, p. 81
  11. O. Bohnke, G. Frand, M.Rezrazzi, C. Rousselot and C. Truche, 'Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration,' Solid State lonics, Vol. 66, 1993, p. 105 https://doi.org/10.1016/0167-2738(93)90033-Y
  12. Y. Saito, A. M. Stephan and H. Kataoka, 'Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient', Solid State lonics, Vol. 160, 2003, p. 153