Effect of Carbon Content of Sulfur Electrode on the Electrochemical Properties of Lithium/Sulfur Battery Using PEO Electrolyte

유황전극의 탄소량 변화에 따른 리튬/유황 전지의 방전특성 변화

  • Kang, K.Y. (Carbonix, Inc., Technical Laboratory) ;
  • Ryu, H.S. (Global Leader Development Center for i-cube materials and parts, Gyeongsang National University) ;
  • Kim, J.S. (Global Leader Development Center for i-cube materials and parts, Gyeongsang National University) ;
  • Kim, K.W. (ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Ahn, J.H. (ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Lee, G.H. (Surface Technology Research Center, Korea Institute of Machinery and Materials) ;
  • Ahn, H.J. (ITRC for Energy Storage and Conversion, Gyeongsang National University)
  • 강근영 ((주)카보닉스) ;
  • 류호석 (경상대학교 아이큐브센터) ;
  • 김종선 (경상대학교 아이큐브센터) ;
  • 김기원 (경상대학교 IT용 에너지 저장 및 변환 센터) ;
  • 안주현 (경상대학교 IT용 에너지 저장 및 변환 센터) ;
  • 이건환 (한국기계연구원) ;
  • 안효준 (경상대학교 IT용 에너지 저장 및 변환 센터)
  • Published : 2006.09.15

Abstract

Electric conductive material should be homogeneously mixed with sulfur in sulfur electrode fabrication of lithium/sulfur battery, because sulfur is electric insulator. In this paper electrochemical properties of Li/S battery was studied with various compositions of sulfur electrodes. When content of sulfur changed from 40 wt.% to 80 wt.%, the 60 wt.% sulfur electrode showed the maximum capacity of 1489 mAh/g-sulfur. Electrochemical properties of Li/S battery using 60 wt.% sulfur was also investigated with various carbon contents. The discharge capacity changed as a function of carbon contents. The optimum composition was 25 wt.% carbon for 60 wt.% sulfur electrode.

Keywords

References

  1. R. D. Rauh, G. F. Person and S. B. Brummer, Porc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage 77-6, 1997, The Electrochemical Society, Princeton, NJ, 1977
  2. R. D. Rauh, K. M. Abraham, G. F. Person, J. K. Suprenant, and S. B. Bnnnmer, 'A Lithium/ Dissolved Sulfur Battery with an Organic Electrolyte', J. Electrochem. Soc., Vol. 126, 1979, p. 523 https://doi.org/10.1149/1.2129079
  3. E. Peled and H. Yamin, 'Electrochemistry of a nonaqueous lithium/sulfur cell', J. Power Source Vol. 9, 1983, p. 28
  4. E. Peled, A. Gorenshtein, M. Segal and Y. Sternberg, 'Rechargeable lithium-sulfur battery (extended abstract)', J. Power Sources, Vol. 26, 1989, p. 269 https://doi.org/10.1016/0378-7753(89)80133-8
  5. Degott, Doctoral Thesis, 1986
  6. M. Y. Chu, Oakland, Calf, U. S. Patent No. 5686201
  7. D. Marmorstein, T. H. Yu, K. A. Striebel, F. R. McLamon, J. Hou and E. J. Cairns, 'Electrochemical performance of lithium/-sulfur cells with three different polymer electrolytes', J. Power Sources, Vol. 89, 2000, p. 219 https://doi.org/10.1016/S0378-7753(00)00432-8
  8. C. W. Park, H. S. Ryu, K. W. Kim, J. H. Ahn, J. Y. Lee, and H. J. Ahn, 'Effect of Sulfur Electrode Composition on the Electrochemi-cal Property of Lithium/PEO/Sulfur Battery', Matals and Materials international, Vol. 10, No. 4, 2004, p. 375 https://doi.org/10.1007/BF03185988
  9. H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn and J. Y. Lee, J. 'Discharge process of Li/PVdF/S cells at room temperature', Power Sources, Vol. 153, 2006, p.360 https://doi.org/10.1016/j.jpowsour.2005.05.037