Comparison of the Chicken Large Intestine to the Large Intestine of Pigs and the Rumen of Cows

닭의 대장을 돼지의 대장이나 소의 제 1위 (Rumen)와 비교 연구

  • Nahm K.H. (Feed and Nutrition Laboratory, College of Life and Environmental Science, Taegu University)
  • 남기홍 (대구대학교 환경생명과학대학 가축사료영양학교실)
  • Published : 2006.03.01

Abstract

The large intestine of the chicken differs both anatomically and physiologically from the pig's large intestine and the men of the cow. The chicken's large intestine is less developed than the pig's large intestine or the cow's lumen. This paper summaries these differences. The chicken's large intestine contains a microbiological population similar to that found in the rumen. The chicken's caeca especially contains a large number of microorganisms, but this population varies according to age, fred, maturity, antibiotic use and etc.. Protein is an essential nutrient for the formation of intestinal microvilli. A study showed that the length of the small intestine was 63 % of the total gastrointestinal tract (GIT) length, while caecum was 8.1 %, and the colon and rectum were 4.6 %. The establishment of the microbial population of the small intestine occurs earlier than that of the caeca, but the identity of approximately 90 % of microbial population of the chicken GIT is hon. Recent studies have shown that energy, volatile fatty acid (VFA) and electrolytes that are found in the large intestine may be absorbed to a certain degree. The chicken small intestine is the primary location for digestion with a variety of enzymes being secreted here. Much research is being conducted into the digestion of sucrose thermal oligosaccharide caramel (STOP), fructooligosaccharides (FOS), mannanoligosaccharide (MOS), galactooligosaccharides (GOS) and isomalto-oligosaccharides (IMO) in the chicken caeca and large intestine. Excessive fibre content in the feed has detrimental effects, but proper fibre supplementation to chicken diets can improve the length and capacity of the small intestine.

닭의 대장은 해부학적, 생리학적으로 돼지의 대장이나 소의 men과 다르다. 닭의 대장은 소의 men이나 돼지의 대장에 비교하여 잘 발달되어 있지 않다. 그러나 닭의 대장속에 있는 미생물군은 rumen 속의 것과 비슷하다. 특히 닭의 맹장속에는 많은 미생물이 있으며 이 미생물군은 나이, 사료, 성성숙의 정도, 항생제 사용 유무 등에 따라서 다양하게 나타난다. 단백질은 장내의 미생물 형성에 중요한 영양소이다. 닭에서 소장의 길이는 전장 길이의 65%를 차지하며 닭의 맹장은 8.1 %그리고 직장과 공장은 4.6 %를 차지한다. 소장 내에 분포하는 미생물 군은 현재까지 약 10%가 구명된 상태로서 나머지 90%에 대한 정보는 전무하다. 최근의 연구에 따르면 에너지, 저급지방산 (VFA)과 그리고 전해물질이 대장에서 약간씩 흡수되는 것으로 알려져 있다. 닭의 소장은 각종 효소등이 분비되어 소화가 일어나는 중추적인 역할을 하는 것으로 알려져 있다. 앞으로도 많은 연구가 과당류 즉 sucrose thermal oligosaccharide caramel (STOP), fructooligosaccharides (FOS), mannanoligosaccharide (MOS), galactooligosaccharide (GOS) 그리고 isomaltooligosaccharides (IMO)등이 맹장과 대장내에서 어떻게 소화가 일어나는지에 관해서 집중되어야 한다. 과량의 섬유질 함량은 닭의 소화에 치명적일 수 있지만 적당량을 사료에 혼합하여 급여하면 소장의 길이와 함량을 증가시킬 수 있는 효과가 있다.

Keywords

References

  1. Apajalahti JHA., Kettunen A., Bedford MR. Holben WE 2001 Percent G+C profiling accurately reveals diet related differences in the gastrointestinal microbial community of broiler chickens. Appl Environ Microb 67(12):5656-5667 https://doi.org/10.1128/AEM.67.12.5656-5667.2001
  2. Applegate TJ, Karcher DM, Lilburn MS 2005 Comparative development of the small estine in the turkey poult and Pekin duckling Poul Sci 84:426-431 https://doi.org/10.1093/ps/84.3.426
  3. Argenzio RA, Southworth M 1974 Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am J Phys 228(2):454-460
  4. Baker F, Nasr H, Morrice F, Bruce J 1950 Bacterial breakdown of structural starches and starch producers in the digestive tract of ruminant and non- ruminant animals. J Pathol Bact 62:617-620 https://doi.org/10.1002/path.1700620412
  5. Barnes EM, Impey CS, Cooper DM 1980 Manipulation of the crop and intestinal flora of the newly hatched chick. Am J Clin Nutr 33(11 Suppl.):2426-2433 https://doi.org/10.1093/ajcn/33.11.2426
  6. Barnes EM, Mead GC, Barnum DA, Harry EG 1972 The intestinal flora of the chicken in the period 2 to 6 weeks of ago, with particular reference to the anaerobic bacteria. Br Poul Sci 13:311-326 https://doi.org/10.1080/00071667208415953
  7. Batal AB, Parsons CM 2002 Effect of age on development of digestive organs and performance of chicks fed a corn-soybean meal versus a crystalline amino acid diet. Poul Sci 81: 1338-1341 https://doi.org/10.1093/ps/81.9.1338
  8. Baylay HS 1978 Comparative physiology of the hindgut and its nutritional significance. J Anim Sci 46(6):1800-1802 https://doi.org/10.2527/jas1978.4661800x
  9. Bjorck I, Nyman M, Asp NG 1984 Extrusion cooking and dietary fibre: Effects on dietary fiber content and on degradation in the rat intestinal tract. Cer Chem 61:174-179
  10. Browne TG 1922 Some observations on the digestive system of the fowl. J Compar Pathol Therop 35:12-17 https://doi.org/10.1016/S0368-1742(22)80002-3
  11. Bryant MP 1974 Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. The Amer J Clin Nutr 27:1313-1319 https://doi.org/10.1093/ajcn/27.11.1313
  12. Carre B 1990 Predicting the dietary energy value of poultry feeds. Feedstuffs Eval. (Eds J Wiseman, DJA Cole) pp. 283- 300 (Butter Worth Publishing, London, United Kingdom)
  13. Carre B 1991 Factors affecting the digestibility of non-starch carbohydrates in mono-gastric animals. Georgia Nutrition Conference Special Publication Athen GA USA. pp. 20-32
  14. Carew LBL, Machemer RH, Sharp RW, Foss DC 1972 Fat absorption by the very young chick. Poul Sci 51:738-742 https://doi.org/10.3382/ps.0510738
  15. Chaveerach P, Keuzenkamp DA, Lipman LHA, Van Knapen F 2004 Effect of organic acids in drinking water for young broilers on campulobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poul Sci 83:330-334 https://doi.org/10.1093/ps/83.3.330
  16. Cherry TA, Siegel PB 1978 Selection for body weights at eight weeks of age, feed passage and intestinal size of normal and dwarf chicks. Poul Sci 57:336-340 https://doi.org/10.3382/ps.0570336
  17. Clark PL 1978 The structure of the ileo-caeca-colic junction of domestic fowl (Gallus gallus L.). Br Poul Sci 19:595-600 https://doi.org/10.1080/00071667808416519
  18. Colin GC 1886 Traite de physiologic compare des animanx. Paris, Baillere et Fils. Cited by A.T. Phillipson, 1970. In Dukes' Physiology of Domestic Animals. (Ed. MJ Swenson), P. 124. (Comstock Publishing, Ithaca, NY, USA)
  19. Coloe PJ, Bagust TJ, Ireland I 1984 Development of the normal gastrointestinal microflora specific pathogen-free chickens. The J Hyg 92:79-87 https://doi.org/10.1017/S0022172400064056
  20. Coon CN, Leske KL, Akavanichan O, Cheng TK 1990 Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult roosters. Poul Sci 69: 787-793 https://doi.org/10.3382/ps.0690787
  21. Cromptons DWT, Nesheim MC 1976 Host-parasite relationships in the alimentary tract of domestic birds. Advan Paras 14: 95-121 https://doi.org/10.1016/S0065-308X(08)60514-X
  22. Cummings JH, Branch W, Jerkins DJA, Southgate DAT, Houston H, James WPT 1978 Colonic response to dietary fibre from cattlelot, Cabbage, Apple, Bran and Guar Gum. Lan. 1:5-8
  23. Dehority BA, Tirabasso PA 2000 Antibiosis between ruminal bacteria and ruminal fungi. Appl Environ Microb 66(7): 2921-2927 https://doi.org/10.1128/AEM.66.7.2921-2927.2000
  24. Drew MD, Syed NA, Goldade BG, Loarveld B, Kessel V 2004 Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poul Sci 83:414-420 https://doi.org/10.1093/ps/83.3.414
  25. Edelman S, Weaterland-Wikstrom B, Leskela S, Kettunen H, Rautonen N 2002 in vitro adhesion specificity of indigenous Lactobacilli within in avian intestinal tract. Appl Environ Microb 68(10):5155-5159 https://doi.org/10.1128/AEM.68.10.5155-5159.2002
  26. Ehle FR, Jeraci JL, Robertson SB, Van Soest PJ 1982 The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. J Anim Sci 55: 1071- 1081 https://doi.org/10.2527/jas1982.5551071x
  27. Engberg RM, Hedemann MS, Steenfeldt S, Jensen BB 2004 Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poul Sci 83:925-938 https://doi.org/10.1093/ps/83.6.925
  28. Elsden SR, Hitchcock WS, Marshall RA, Phillipson AT 1946 Volatile fatty acids in the digesta of ruminants and other animals. J Exper Biol 22:191-202
  29. Englyst HN, Cummings JH 1985 Digestion of the polysaccharides of some cereal foods in the human small intestine. Amer J Clin Nutr 42:778-787 https://doi.org/10.1093/ajcn/42.5.778
  30. Esmail SHM 1997 Fibre nutrition. Poul. Intern. (July). pp. 31-34
  31. Farrell DL Johnson KA 1970 Utilization of cellulose by pigs and its effects on caecal function. Anim Prod 14:209-217 https://doi.org/10.1017/S0003356100010898
  32. Friend DW, Nicholson JWG, Cunningham HM 1964 Volatile fatty acid and lactic acid content of pig blood. Can J Anim Sc 44:303-307 https://doi.org/10.4141/cjas64-044
  33. Gel-Garber O, Mabjeesh SJ, Sklan D, Uni Z 2003 Nutrient transport in the small intestine: $Na^+,\;K^+$-ATPase expression and activity in the small intestine of the chicken as influenced by dietary sodium. Poul Sci 82:1127-1133 https://doi.org/10.1093/ps/82.7.1127
  34. Garrido MN, Skjervheim M, Oppegaard H, Sorum H 2004 Acidified litter benefits the intestinal flora balance of broiler chickens. Appl Environ Microb 70(9):5208-5213 https://doi.org/10.1128/AEM.70.9.5208-5213.2004
  35. Gibson GR 1998 Dietary modulation of the human gut microflora using prebiotics. Br J Nutr 80:S209-S212
  36. Gibson GR, Roberfroid MB 1993 Dietary modulation of the human colonic microbiotic introducing the concept of prebiotics. J Nutr 125:1401-1412
  37. Goodman T, Wyatt C, Wood B 1993 Effects of feeding high $\beta$-glucan barleys on metabolizable energy values in young and adult chickens. J Anim Sci 71(Suppl. 1):181
  38. Grauke LJ, Kudva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ 2002 Gastrointestinal tract location of Escherichia coli o157:H7 in ruminants. Appl Environ Microb 68(5): 2269-2277 https://doi.org/10.1128/AEM.68.5.2269-2277.2002
  39. Guo FC, Williams BA, Kwakkel RP, Verstegen WA 2003 in vitro fermentation characteristics of two mush room species, an herb, and their polysaccharide fractions, using chicken caecal contents as inoculum. Poul Sci 82:1608-1615 https://doi.org/10.1093/ps/82.10.1608
  40. Hall MB 1997 Interpreting Feed Analysis (Uses, abuses, and facts). Feed Manag 48(6):25-28
  41. Hartung J, Phillips VR 1994 Control of gasous emissions from livestock buildings and manure stores. J Agricul Eng Res 57:173-189 https://doi.org/10.1006/jaer.1994.1017
  42. Hayes ET, Leek ABG, Curran TP, Dodd VA, Carton OT 2004 The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bior Tech 91:309-315 https://doi.org/10.1016/S0960-8524(03)00184-6
  43. Hecker JF, Grovum WL 1975 Rates of passage of digesta and water absorption along the large intestines of sheep, cows and pigs. Austr J Biol Sci 28:61-169
  44. Henry Y, Duee PH, Seve B 1979 Construction of the amino acid requirement of the pig. World Rev. Anim Prod 15(2): 37-53
  45. Hernandez F, Madrid J, Garcia V, Orengo J, Megias MD 2004 Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poul Sci 83:169-174 https://doi.org/10.1093/ps/83.2.169
  46. Hetland H, Svihus B 2001 Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br Poul Sci 42(3):354-361 https://doi.org/10.1080/00071660120055331
  47. Hillerman JP, Kratzer FH, Wilson WD 1953 Food passage through chickens and turkeys and some regulating factors. Poul Sci 32:332-335 https://doi.org/10.3382/ps.0320332
  48. Hinton Jr. A, Buhr RJ, Ingram KD 2000 Physical, chemical, and microbiological changes in the caeca of broilerchickens subjected to incremental feed withdrawal. Poul Sci 79:483-488 https://doi.org/10.1093/ps/79.4.483
  49. Hobbs PJ, Misselbrook TH, Pain BF 1995 Assessment of odours from livestock wastes by photoionization detector, an electronic nose, olfactometry and gas-chromatogaphy-mass spectrometry. J Agricul Eng Res 60:137-144 https://doi.org/10.1006/jaer.1995.1007
  50. Hofacre CL 2005 Emerging technologies in microbial ecology: Challenges of Cocci and Necrotic Enteritis to the health of the digestive system. 94th Annual Meeting Program (July 31 .August 3, 2005), Informal Nutrition Symposium, Dynamics of the Digestive system, Poultry Science Association, Auburn University, Auburn, AL, USA. Poultry Science Publishing P. 38
  51. Hojberg O, Canibe N, Knudsen B, Jensen BB 2003 Potential rates of fermentation in digesta from the gastrointestinal tract of pigs: Effect of feeding fermented liquid feed. Appl Environ Microb 69(1):408-418 https://doi.org/10.1128/AEM.69.1.408-418.2003
  52. Holmes JHG, Bayley HS, Horney FD 1973 Digestion and absorption of dry and high-moisture maize diets in the small and large intestine of the pig. Br J Nutr 30:401-409 https://doi.org/10.1079/BJN19730048
  53. Hurwitz S, Bar A 1966 Rate of passage of calcium-45 and yttrium-91 along the intestine and calcium absorption in the laying fowl. J Nutr 89:311-316 https://doi.org/10.1079/BJN2002777
  54. Imoto S, Namioka S 1978 VFA production in the pig large intestine. J Anim Sci 47(2):467-478 https://doi.org/10.2527/jas1978.472467x
  55. Jurgens MH 1974 Animal Feeding and Nutrition (6th Ed.). P. 97. Kendall/Hunt Publishing Co Dubuque Iowa USA
  56. Karasawa Y, Son JH, Koh K 1997 Ligation of caeca improves nitrogen utilization and decreases urinary uric acid excretion in chicken fed a lower protein diet plus urea. Br Poul Sci 38:439-441 https://doi.org/10.1080/00071669708418017
  57. Kass ML, Van Soest PJ, Pond WG, Lewis B, McDowell RE 1980 Utilization of dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet components in specific segments of the gastrointestinal tract. J Anim Sci 50: 175-191 https://doi.org/10.2527/jas1980.501175x
  58. Khalon TS, Chow FI, Hoeffer JL, Betschart AA 1986 Bioavailability of vitamin A and E as influenced by wheat bran and bran particle size. Cer Chem 63:490-493
  59. King D, Fan MZ, Ejeta G, Asem EK, Adeola O 2000 The effect of tannins on nutrient utilization in the White Pekin duck. Br Poul Sci 41(5):630-639 https://doi.org/10.1080/713654982
  60. Knarreborg A, Simon MA, Engberg RM, Jensen BB, Tannock GW 2002 Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl Environ Microb 68(12):5918-5924 https://doi.org/10.1128/AEM.68.12.5918-5924.2002
  61. Konstantinov SR, Awati A, Smidt H, Williams BA, Akkermans ADL, de Vos WM 2004 Specific response of a novel and abundant Lactobacillus amylovorus-like Phylotype to dietary prebiotics to the guts of weaning piglets. Appl Environ Microb 70(7):3821-3830 https://doi.org/10.1128/AEM.70.7.3821-3830.2004
  62. Krogdahl A, Sell J 1989 Influence of age on lipase amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poul Sci 68:1561-1568 https://doi.org/10.3382/ps.0681561
  63. Kubena LF, Bailey RH, Byrd JA, Young CR, Corrier DE 2001 Caecal votattle fatty acids and broiler chick susceptibility to Salmonella typhimurium colonization as affected by Aflatoxins and T-toxin. Poul Sci 80:411-417 https://doi.org/10.1093/ps/80.4.411
  64. Kubena LF, Bailey RH, Byrd JA, Young CR, Corrier DE 2005 Effects of tannic acid on caecal volatile fatty acids and susceptibility to Salmonella typhimurium colonization in broiler chicks. Poul Sci 80:1293-1298
  65. Lan PT, Hayash H, Sakamoto M, Benno Y 2002 Phylogenetic analysis of caecal microbiota in chicken by the use ofn16S rDNA colonic libraries. Micr Imm 46:371-382 https://doi.org/10.1111/j.1348-0421.2002.tb02709.x
  66. Lan Y, Verstegen MWA, Tamminga S, Williams BA 2005 The role of the commensal gut microbial community in broiler chickens. World's Poul Sci J 61:95-104 https://doi.org/10.1079/WPS200445
  67. Lee J, Coulter B 1990 A macro view of animal manure production in the European community and implications for environment. Manure and Environment, Missei Agriseminar, VIV-Europe, November 14th 1990, Utrecht, The Netherlands. Special Publication pp.159-169
  68. Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Moller K 2000 Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl Environ Microb 66 (8):3290-3296 https://doi.org/10.1128/AEM.66.8.3290-3296.2000
  69. Lji PA, Saki A, Tivey DR 2001 Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br Poul Sci 42(4)505-513 https://doi.org/10.1080/00071660120073151
  70. Loyd LE, Dale DG, Crampton EW 1958 The role of the caecum in nutrients utilization by the pig. J Anim Sci 17: 684-690 https://doi.org/10.2527/jas1958.173684x
  71. Loddi M, Malagaido A, Kocher A 2005 Responses to antibiotic growth promoters, mannan-oligosaccharides and organic acids in Salmonella-challenged broilers. Poul Sci 84 (Suppl. 1), 7
  72. Mackie RI, Aminov RI, Hu W, Klieve AV Quwerkerk D 2003 Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl.Environ.Microb. 69(11)6808-6815 https://doi.org/10.1128/AEM.69.11.6808-6815.2003
  73. Maneewan B, Yamauchi K 2004 Intestinal villus recovery in chickens refed semi-purified protein-, fat- or fiber-free pellet diets. Br Poul Sci 45(2):165-170
  74. Marron L, Bedford MR, McCracken KJ 2001 The effects of adding xylanase, vitamic and performance. Br Poul Sci 42 (4):493-500 https://doi.org/10.1080/00071660120070569
  75. Mateos GG, Sell JL 1981 Influence of fat and carbohydrate source on rate of food passage of semipurified diets for laying hens. Poul Sci 60:2114-2119 https://doi.org/10.3382/ps.0602114
  76. Mateos GG, Sell JL, Eastwood JA 1982 Rate of food passage (Transit time) as influenced by level of supplemental fat. Poul Sci 61:94-100 https://doi.org/10.3382/ps.0610094
  77. McNab JM 1973 The avian caeca: A review. World's Poul Sci J 29:251-263 https://doi.org/10.1079/WPS19730014
  78. Mead GC, Adams BW 1975 Some observation on the caecal microflora of the chick during the first two weeks of life. Br Poul Sci 16:169-176 https://doi.org/10.1080/00071667508416174
  79. Mead GC 1989 Microbes of the avian caecum: Types of present and substrates utilized. J Exper Zool 32(Suppl. 3):48-54
  80. Mikkelsen LL, Bendixen C, Jakobsen M, Jensen BB 2003 Enumeration of bifidobacteria in gastrointestinal samples from piglets. Appl Environ.Micr 69(1):654-658 https://doi.org/10.1128/AEM.69.1.654-658.2003
  81. Mikkelsen LL, Naughton PJ, Hedermann MS, Jensen BB 2004 Effect of physical properties of feed on microbial ecology and survival of Salmonella enterica Serovar Typhimurium in the pig gastrointestinal tract. Appl Environ Micr 70(6): 3485-3492 https://doi.org/10.1128/AEM.70.6.3485-3492.2004
  82. Miner JR 1975 Management of odors associated with livestock production. Processing of 3rd International Symposium Livestock Waste, ASAE, Urbana-Champaign, IL, USA. Special Publication pp. 378-380
  83. Moran ET, Jr 1982 Starch digestion in fowl. Poul Sci 61: 1257-1267 https://doi.org/10.3382/ps.0611257
  84. Mosenthin RW, Sauer C, Henkel H, Ahrens F, deLange CFM 1992 The effect of starch infusion at the distal ileum on urea recycling and bacterial nitrogen excretion. J Anim Sci 70: 3467-3472 https://doi.org/10.2527/1992.70113467x
  85. Nahm KH 1984 Effects of cellulose from T. Viride on wheat bran utilization and the minerals influenced by cell wall components in broiler diets. Ph.D. thesis of South Dakota State University, Bookings, SD, USA. Special Publication P.75
  86. Nakahiro Y, Isshiki Y, Tasaki I 1974 Digestion of crude fiber in the caecum of chickens. Japanese J Zoo-tech Sci 45:427-434
  87. Noy Y, Sklan D 1995 Digestion and absorption in the young chick. Poul Sci 74:366-373 https://doi.org/10.3382/ps.0740366
  88. Noy Y, Sklan D 1997 Post-hatch development of poultry. J Appl Poul Sci 6:344-354
  89. Orban JI, Patterson JA, Adeola O, Sutton AL, Richards GN 1955a Growth performance and intestinal microbial populations in White Pekin ducks fed diets containing sucrose thermal oligosaccharide caramel. Poul Sci 74(Suppl. 1):209 (Abstr.)
  90. Orban JI, Patterson JA, Adeola O, Sutton AL, Richards GN 1997 Growth performance and intestinal microbial population of growing pigs fed diets containg sucrose thermal oligosaccharide caramel. J Anim Sci 75:170-175
  91. Orban JI, Patterson JA, Sutton AL, Richards GN 1993 Effect of sucrose thermal oligosaccharide caramel on growth and intestinal microflora of broiler chickens. Poul Sci 72(Suppl. 1):132 (Abstr.)
  92. Orban JI, Patterson JA, Sutton AL, Richards GN 1995b Influence of sucrose thermal oligosaccharide caramel and vitamin-mineral level on growth and changes in intestinal microbial population in broilers from dry-old to four weeks of age. Poul Sci 74(Suppl.):207 (Abstr.)
  93. Palmer ME, Rolls BA 1983 The activities of some metabolic enzymes in the intestines of germ-free and conventional chicks. Br J Nutr 50:783-790 https://doi.org/10.1079/BJN19830149
  94. Philips SM, Fuller R 1983 The activities of amylase and a trypsin-like protease in the gut contents of germ-free and conventional chickens. Br Poul Sci 24:115-121 https://doi.org/10.1080/00071668308416720
  95. Polin D, Hussein TH 1982 The effect of bile acid on lipid and nitrogen retention, carcass composition and dietary metabolizable energy in very young chicks. Poul Sci 61:1697-1707 https://doi.org/10.3382/ps.0611697
  96. Rerat A 1978 Digestion and absorption of carbohydrates and nitrogenous matters in the hindgut of the omnivorous nonruminant animal. J Anim Sci 46(6):1808-1837 https://doi.org/10.2527/jas1978.4661808x
  97. Rojas MF, Ascencio F, Conway PL 2002 Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds of porcine small intestinal mucus and gastric mucin. Appl Environ Micr 68(5):2330-2336 https://doi.org/10.1128/AEM.68.5.2330-2336.2002
  98. Salanitro JP, Blake IG, Muirhead PA 1977 Isolation and identification of fecal bacteria from adult swine. Appl Environ Micr 33:79-84
  99. Savage DC 1986 Gastrointestinal microflora in mammalian nutrition. Amer Review Nutr 6:155-178 https://doi.org/10.1146/annurev.nu.06.070186.001103
  100. Seerley RW, Miller ER, Hoefer JA 1962 Rate of food passage studies with pigs equally and ad libitum fed meal and pellets. J Anim Sci 21:834-843 https://doi.org/10.2527/jas1962.214834x
  101. Silversides FG, Beford MR 1999 Enzymes may improve energy, protein digestibility. Feedstuffs (March) pp. 15-17
  102. Simic V, Ilic A 1976 Essential morphological-topographicalm differences and characteristics of the ceacum in man and domestic animals. Acta Anat 94:299-304 https://doi.org/10.1159/000144562
  103. Sklan D, Noy Y 2003 Functional development and intestinal absorption in the young poult. Br Poul Sci 44(4):651-658 https://doi.org/10.1080/00071660310001618325
  104. Sklan D, Smimoy A, Plavnik I 2003 The effect of dietary fibre on the small intestines and apparent digestion in the turkey. Br Poul Sci 44(5):735-740 https://doi.org/10.1080/00071660310001643750
  105. Solis de los Santos F, Farnell MB, Tellez G, Balog JM, Anthony NB 2005 Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxia environment. Poul Sci 84:1092-1100 https://doi.org/10.1093/ps/84.7.1092
  106. Son JH, Karasawa Y, Nahm KH 1996 Effects of cecectomy on nitrogen utilization and nitrogen excretion in chicken fed a low protein diet supplied with urea. Asian-Australasian J Anim Sci 10:274-276
  107. Son JH, Nahm KH 1996 Effects of caecum ligation on the amount of feed and water intake and water excretion. Kor J Anim Sci 20(6):543-545
  108. Sun X, McElroy A, Webb KE, Jr, Sefton AE, Novak C 2005 Broiler performance and intestinal alterations when fed drug-free diets. Poul Sci 84:1294-1302 https://doi.org/10.1093/ps/84.8.1294
  109. Sutton AL, Kephart KB, Verstegen MWA, Cahn TT, Hobbs PJ 1999 Potential fro reduction of odorous compounds in swine manure through diet modification. J Anim Sci 77:430-439
  110. Svihus B, Hetland H, Choct M, Sundby F 2002 Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Br Poul Sci 43(5): 662-668 https://doi.org/10.1080/0007166021000025037
  111. Swenson MJ 1977 Duke's Physiology of Dometic Animals (9th Ed.). Ithaca NY USA P.313. (Comstock Publishing)
  112. Taylor RD, Jones GPD 2004 The incorporation of whole grain into pelleted broiler chicken diets. II. Gastrointestinal and digesta characteristics. Br Poul Sci 45(2):237-246 https://doi.org/10.1080/00071660410001715849
  113. Tellez G 2005 Digestive physiology and the role of microorganisms. 94th Annual Meeting Program (July 31.August 3, 2005), Informal Nutrition Symposium, Dynamics of the Digestive system, Poultry Science Association, Auburn Univrsity, Auburn, AL, USA. Special Publication P. 37
  114. Theander O, Westerlund E, Aman P, Graham H 1989 Plant cell walls and monogastric diets. Anim Feed Sci Tech 23:205-225 https://doi.org/10.1016/0377-8401(89)90098-9
  115. Uni Z, Ganot S, Sklan D 1998 Posthatch development of mucosal function in the broiler small intestine. Poul Sci 77:75-82 https://doi.org/10.1093/ps/77.1.75
  116. Uni Z, Geyra A, Ben-Hur H, Sklan D 2000 Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration. Br Poul Sci 41(5):544-551 https://doi.org/10.1080/00071660020009054
  117. Uni Z, Ganot S, Sklan D 1995 Posthatch changes in morphology and function of the small intestines in heavy and light strain chicks. Poul Sci 74:1622-1629 https://doi.org/10.3382/ps.0741622
  118. Uni Z, Ganot S, Sklan D 1996 Developmental parameters of the small intestines in heavy and light strain chicks pre- and post-hatch. Br Poul Sci 36:63-71
  119. Uni Z, Noy Y, Sklan D 1999 Posthatch development of small intestinal function in the poult. Poul Sci 78:215-222 https://doi.org/10.1093/ps/78.2.215
  120. Uni Z, Smirnov A, Sklan D 2003 Pre- and posthatch development of goblet cells in the broiler small intestine: Effect of delayed access to feed. Poul Sci 82:320-327 https://doi.org/10.1093/ps/82.2.320
  121. van der Wielen Paul WJJ, Biesterveld S, Notermans S, Hofstra H, Urlings Bert AP, van Knapen EC 2000 Role of volatile fatty acids in development of the caecal microflora in broiler chickens during growth. Appl Envrion Micr 66(6):2536- 2540 https://doi.org/10.1128/AEM.66.6.2536-2540.2000
  122. Van Der Wielen PWJJ, Van Knapen F, Biesterveld A 2002 Effect of administration of Lactobacillus crispatus, Clostridium lactatifermentans and dietary lactose on the development of the normal microflora and volatile fatty acid in the caeca of broiler chicks. Br Poul Sci 43(4):545-550 https://doi.org/10.1080/0007166022000004453
  123. Van Leeuwen P, Mouwen JMVM, Van Dar Klis JD, Verstegen MWA 2004 Morphology of the small intestinal mucosal surface of broilers in relation to age, diet formulation, small intestinal microflora and performance. Br Poul Sci 45(1): 41-48 https://doi.org/10.1080/00071660410001668842
  124. Van Soest PJ 1994 Nutritional ecology of the ruminant (2nd Ed.)., Ithaca, NY, USA P.102. (Cornell University Press)
  125. van Winsen RL, Urlings BAP, Lipman LJA, Snigders JMA, Keuzenkamp D 2001 Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Micr 67(7):3071-3076 https://doi.org/10.1128/AEM.67.7.3071-3076.2001
  126. Washburn KW 1991 Efficiency of feed utilization and rate of feed passage through the digestive system. Poul Sci 70: 449-452
  127. Watkins EJ, Butler PJ, Kenyon BP 2004 Posthatch growth of the digestive system in wild and domesticated ducks. Br Poul Sci 45(3):331-341 https://doi.org/10.1080/00071660410001730824
  128. Whitford MF, Mcpherson MA, Forster RJ, Teather RM 2001 Identification of bacterion-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Micr 67(2):569-574 https://doi.org/10.1128/AEM.67.2.569-574.2001
  129. Wilson EK, Pierson FW, Hester PY, Adams RL, Stadelman WJ 1980 The effect of high environmental temperature on feed passage time and performance traits of White Pekin ducks. Poul Sci 59:2322-2330 https://doi.org/10.3382/ps.0592322
  130. Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH 2004 Influence of method of whole wheat inclusion and xylanase supp;ementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. Br Poul Sci 45(1):385-394 https://doi.org/10.1080/00071660410001730888
  131. Yazawa K, Imai K, Tamura Z 1978 Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem Pharm Bull (Tokyo) 26:3306-3311 https://doi.org/10.1248/cpb.26.3306
  132. Zdunczyk Z, Juskiewicz J, Jankowski J, Biedrzycka E, Koncicki A 2005 Metabolic response of the gastrointestinal tract of turkeys to diets with different levels of mannan-oligosaccharide. Poul Sci 84:903-909 https://doi.org/10.1093/ps/84.6.903
  133. Zhang WF, Li DF, Lu WQ, Yi GF 2003 Effects of isomaltooligosaccharides can broiler performance and intestinal microflora. Poul Sci 82:657-663 https://doi.org/10.1093/ps/82.4.657
  134. Zhu XY, Jergert RD 2003 Composition of microbiota in content and mucus from caecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poul Sci 82:1242-1249 https://doi.org/10.1093/ps/82.8.1242
  135. Zhu XY, Zhong T, Pandya Y, Joerger RD 2002 16S rRNABased analysis of microbiota from the caecum of broiler chickens. Appl Environ Micr 68(1):124-137 https://doi.org/10.1128/AEM.68.1.124-137.2002